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Summary
Background An increasing volume of prostate biopsies and a worldwide shortage of urological pathologists puts a 
strain on pathology departments. Additionally, the high intra-observer and inter-observer variability in grading can 
result in overtreatment and undertreatment of prostate cancer. To alleviate these problems, we aimed to develop an 
artificial intelligence (AI) system with clinically acceptable accuracy for prostate cancer detection, localisation, and 
Gleason grading.

Methods We digitised 6682 slides from needle core biopsies from 976 randomly selected participants aged 50–69 in 
the Swedish prospective and population-based STHLM3 diagnostic study done between May 28, 2012, and Dec 30, 2014 
(ISRCTN84445406), and another 271 from 93 men from outside the study. The resulting images were used to train 
deep neural networks for assessment of prostate biopsies. The networks were evaluated by predicting the presence, 
extent, and Gleason grade of malignant tissue for an independent test dataset comprising 1631 biopsies from 246 men 
from STHLM3 and an external validation dataset of 330 biopsies from 73 men. We also evaluated grading performance 
on 87 biopsies individually graded by 23 experienced urological pathologists from the International Society of 
Urological Pathology. We assessed discriminatory performance by receiver operating characteristics and tumour 
extent predictions by correlating predicted cancer length against measurements by the reporting pathologist. We 
quantified the concordance between grades assigned by the AI system and the expert urological pathologists using 
Cohen’s kappa.

Findings The AI achieved an area under the receiver operating characteristics curve of 0·997 (95% CI 0·994–0·999) 
for distinguishing between benign (n=910) and malignant (n=721) biopsy cores on the independent test dataset and 
0·986 (0·972–0·996) on the external validation dataset (benign n=108, malignant n=222). The correlation between 
cancer length predicted by the AI and assigned by the reporting pathologist was 0·96 (95% CI 0·95–0·97) for the 
independent test dataset and 0·87 (0·84–0·90) for the external validation dataset. For assigning Gleason grades, the 
AI achieved a mean pairwise kappa of 0·62, which was within the range of the corresponding values for the expert 
pathologists (0·60–0·73).

Interpretation An AI system can be trained to detect and grade cancer in prostate needle biopsy samples at a ranking 
comparable to that of international experts in prostate pathology. Clinical application could reduce pathology workload 
by reducing the assessment of benign biopsies and by automating the task of measuring cancer length in positive 
biopsy cores. An AI system with expert-level grading performance might contribute a second opinion, aid in 
standardising grading, and provide pathology expertise in parts of the world where it does not exist.
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Introduction
Histopathological evaluation of prostate biopsies is crucial 
to the clinical management of men suspected of having 
prostate cancer. However, the histopathological diagnosis 
of prostate cancer is associated with several challenges. 
More than one million men undergo prostate biopsy in 
the USA annually.1 With the standard biopsy procedure 
resulting in 10–12 needle cores per patient, more than 
10 million tissue samples need to be examined by 
pathologists. The increasing incidence of prostate cancer 

in an ageing population means that the number of 
biopsies is likely to further increase. Additionally, a global 
shortage of pathologists exists. For example, China has 
only one pathologist per 130 000 population, and in many 
African countries the ratio is in the order of one 
per million.2,3 Western countries are facing similar 
problems, with an expected decline in the number of 
practicing pathologists due to retirement.4 Gleason grade 
is a strong prognostic factor for the survival of patients 
with prostate cancer and is crucial for treatment decisions. 
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Gleason grade is based on morphological examination 
and is recognised as subjective. This subjectivity is 
reflected in high intrapathologist and interpathologist 
variability in reported grades, as well as both 
underdiagnosis and overdiagnosis of prostate cancer.5,6

A possible solution to these challenges is the application 
of artificial intelligence (AI) to prostate cancer 
histopathology. The development of an AI system to 
identify benign biopsies with high accuracy could 
decrease the workload of pathologists and allow them to 
focus on difficult cases. Furthermore, an accurate AI 
could assist the pathologist with the identification, 
localisation, and grading of prostate cancer among those 
biopsies not excluded in the initial screening process, 
thus providing a safety net to protect against potential 
misclassification of biopsies. AI-assisted pathology 
assessment could reduce inter-observer variability in 
grading, leading to more consistent and reliable 
diagnoses and better treatment decisions.

By use of high resolution scanning, tissue samples can 
be digitised to whole slide images and used as the input 
for the training of deep neural networks (DNNs), an AI 
technique that has achieved state-of-the-art accuracy in 
many classification problems across various fields, 
including medical imaging.7–10 However, little work has 
been undertaken in prostate diagnostic histopathology.11–16 
Attempts at grading prostate biopsies by DNNs have 
been limited to small datasets or subsets of Gleason 
patterns, and they have not analysed the clinical 
implications of the introduction of AI-assisted prostate 
pathology. In this study, we aimed to develop an AI 
system with clinically acceptable accuracy for prostate 
cancer detection, localisation, and Gleason grading.

Methods
Study design and participants
Between May 28, 2012, and Dec 30, 2014, the prospective, 
population-based, screening-by-invitation STHLM3 study 
(ISRCTN84445406) evaluated a diagnostic model for 
prostate cancer in men aged 50–69 years residing 
in Stockholm, Sweden.17,18 STHLM3 participants had 
10–12-core transrectal ultrasound-guided systematic 
biopsies if they had prostate-specific antigen (PSA) 
concentration of 3 ng/mL or more or a Stockholm3 test 
score of 10% or more. Urologists who participated in the 
study and the study pathologist were blinded to the clinical 
characteristics of the patients. A single pathologist (LE) 
graded all biopsy cores according to the International 
Society of Urological Pathology (ISUP) grading 
classification (where Gleason scores 6, 3 + 4, 4 + 3, 8, and 
9–10 are reported as ISUP grade 1 to 5, also referred to as 
Gleason Grade Groups).19 LE also delineated cancerous 
areas using a marker pen and measured the linear cancer 
extent.

The biopsy cores were formalin fixed and stained with 
haematoxylin and eosin. A random selection of 
8571 biopsies from 1289 STHLM3 participants stratified 
by ISUP grade was digitised (figure 1). The cases were 
chosen to represent the full range of diagnoses, with an 
overrepresentation of high-grade disease. To further 
enrich the data with high-grade cases, 271 slides from 
93 men with ISUP 4 and 5 prostate cancers were obtained 
from outside STHLM3 (figure 1; appendix p 3). These 
slides were regraded by LE, digitised, and used for training 
purposes only. We used 1631 cores from a random 
selection of 246 (19·1%) men to evaluate the performance 
of the AI (the independent test set), and the rest were used 

Research in context

Evidence before this study
We did a literature search in PubMed, searching the title, 
abstract, and keywords of peer-reviewed, English-language 
journal and conference articles published between database 
inception and May 17, 2019, using the terms “prostate cancer” 
AND “histo*” AND (“machine learning” OR “deep learning” OR 
“artificial intelligence”). We also examined the reference lists of 
relevant publications. Contemporary studies using whole slide 
imaging of entire histopathological slides and deep learning 
techniques have shown promising results for detection of 
prostate cancer, and attempts at grading in prostatectomies 
and tissue microarrays. These previous studies have not shown 
experienced urological pathologist-level consistency in grading 
or investigated grading of needle biopsies, which is the 
diagnostic sampling method used in routine clinical practice. 
Moreover, automated estimation of tumour burden in biopsies 
has not been reported. None of the previous studies have relied 
on a well defined sample cohort, which allows for clinically 
meaningful estimation of diagnostic performance metrics, 
such as sensitivity and specificity.

Added value of this study
To the best of our knowledge, we present for the first time 
an algorithm that reaches a performance comparable to 
experienced urological pathologists in the detection, tumour 
burden estimation, and grading of prostate cancer in needle 
biopsies. The AI system was developed and evaluated on a 
population-based dataset prospectively collected within a clinical 
trial, which included standardised biopsy procedures, centralised 
pathology reporting, and blinding to clinical characteristics, such 
as PSA. This dataset represents a broad spectrum of malignant 
morphologies of prostatic tissue encountered in clinical practice.

Implications of all the available evidence
Use of AI to assist pathologists could substantially decrease their 
workload by pre-screening cases and by automatically estimating 
tumour burden, improve patient safety by alarming about 
potentially missed cancers, and reduce variability in grading by 
providing decision support. Our results warrant prospective 
validation in clinical trials to confirm the potential benefits of 
AI-assisted prostate histopathology in routine clinical practice.
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for model training. All biopsies from a given participant 
were assigned to either the training or the test dataset.20

Because slides from different pathology labs differ in 
appearance and quality due to differences in slide prepara
tion and because the characteristics and appearance of 
whole slide images vary by scanner, assessment of the 
performance of DNN models on external labs and 
scanners (ie, images of slides from different pathology 
labs and scanners than the images on which the model 
was trained) from a real-world clinical setting is crucial. 
We therefore obtained 330 slides (73 men) from the 
Karolinska University Hospital and digitised them on the 
scanner available at the hospital’s pathology laboratory to 
replicate their entire workflow of processing and slide 
digitisation (the external validation dataset; figure 1). The 
selection of slides was enriched for higher ISUP grades to 

permit evaluation of predictions for these uncommon 
grades. LE graded all biopsies in the external test dataset 
to avoid confounding from introducing a different 
reporting pathologist and a different laboratory and 
scanner workflow simultaneously.

As an additional test dataset, we digitised 87 cores from 
the Pathology Imagebase, a reference database launched 
by ISUP to promote the standardisation of reporting of 
urological pathology (figure 1).21 These cases were 
independently reviewed by 23 highly experienced 
urological pathologists (the ISUP Imagebase panel). The 
experts were selected on the basis of their international 
reputation and scientific production. A Medline search 
informed that they had authored an average of 105 papers 
on prostate pathology (range 21–321), with an average of 
39 first-author or last-author papers (5–190) at the time of 

Figure 1: Study profile
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recruitment to Imagebase.21 Cores from the men in the 
three test datasets were not part of model development and 
were excluded from any analysis until the final evaluation.

The study protocol was approved by Stockholm regional 
ethics committee (permits 2012/572-31/1, 2012/438-31/3, 
and 2018/845-32). Additional details concerning data 
collection are in the appendix (p 3).

Test methods
We processed the whole slide images with a segmentation 
algorithm based on Laplacian filtering to identify the 
regions corresponding to tissue sections and annotations 
drawn adjacent to the tissue. We then extracted digital 
pixel-wise annotations, indicating the locations of 
cancerous tissue of any grade, by identifying the tissue 

STHLM3 Participants (n=1454)

Biopsied 
(n=7406)

Training 
(n=976)

Extra training 
(n=93)

Test 
(n=246)

Imagebase 
(n=86)

External 
(n=73)

Age, years

<49 45 (0·6%) 4 (0·4%) 0 1 (0·4%) 0 2 (2·7%)

50–54 639 (8·6%) 76 (7·8%) 2 (2·2%) 11 (4·5%) 10 (11·6%) 5 (6·8%)

55–59 1221 (16·5%) 136 (13·9%) 4 (4·3%) 44 (17·9%) 8 (9·3%) 10 (13·7%)

60–64 2027 (27·4%) 255 (26·1%) 5 (5·4%) 67 (27·2%) 23 (26·7%) 12 (16·4%)

65–69 3294 (44·5%) 482 (49·4%) 14 (15·1%) 115 (46·7%) 44 (51·2%) 15 (20·5%)

≥70 180 (2·4%) 20 (2·0%) 48 (51·6%) 8 (3·3%) 1 (1·2%) 29 (39·7%)

Missing 0 3 (0·3%) 20 (21·5%) 0 0 0

Previous negative biopsy

Yes 505 (6·8%) 33 (3·4%) 0 13 (5·28%) 7 (8·1%) ··

No 6901 (93·2%) 940 (96·3%) 0 233 (94·72%) 79 (91·9%) ··

Missing 0 3 (0·3%) 93 (100·0%) 0 0 ··

Prostate-specific antigen

<3 ng/mL 1933 (26·1%) 228 (23·4%) 2 (2·2%) 43 (17·48%) 13 (15·1%) ··

3–<5 ng/mL 3458 (46·7%) 428 (43·9%) 2 (2·2%) 100 (40·65%) 48 (55·8%) ··

5–<10 ng/mL 1612 (21·8%) 213 (21·8%) 13 (14·0%) 73 (29·67%) 16 (18·6%) ··

≥10 ng/mL 403 (5·4%) 104 (10·7%) 47 (50·5%) 30 (12·2%) 9 (10·5%) ··

Missing 0 3 (0·3%) 30 (32·3%) 0 0 ··

Digital rectal examination

Abnormal 680 (9·2%) 133 (13·6%) 46 (49·5%) 39 (15·85%) 12 (14·0%) ··

Normal 6726 (90·8%) 840 (86·1%) 8 (8·6%) 207 (84·15%) 74 (86·0%) ··

Missing 0 3 (0·3%) 39 (41·9%) 0 0 ··

Prostate volume

<35 mL 2701 (36·5%) 425 (43·5%) 19 (20·4%) 92 (37·4%) 42 (48·8%) ··

35–<50 mL 2494 (33·7%) 319 (32·7%) 14 (15·1%) 82 (33·33%) 36 (41·9%) ··

≥50 mL 2211 (29·9%) 229 (23·5%) 19 (20·4%) 72 (29·27%) 8 (9·3%) ··

Missing 0 3 (0·3%) 41 (44·1%) 0 0 ··

Cancer length

No cancer 4605 (62·2%) 142 (14·5%) 0 35 (14·23%) 0 16 (21·9%)

>0–1 mm 545 (7·4%) 133 (13·6%) 2 (2·2%) 35 (14·23%) 4 (4·7%) 1 (1·4%)

>1–5 mm 922 (12·4%) 258 (26·4%) 10 (10·8%) 61 (24·8%) 20 (23·3%) 10 (13·7%)

>5–10 mm 449 (6·1%) 135 (13·8%) 17 (18·3%) 28 (11·38%) 20 (23·3%) 6 (8·2%)

>10 mm 885 (11·9%) 308 (31·6%) 64 (68·8%) 87 (35·37%) 42 (48·8%) 40 (54·8%)

Cancer grade*

Benign 4605 (62·2%) 142 (14·5%) 0 35 (14·2%) ·· 16 (21·9%)

ISUP 1 (3+3) 1558 (21·0%) 413 (42·3%) 1 (1·1%) 104 (42·3%) ·· 12 (16·4%)

ISUP 2 (3+4) 761 (10·3%) 200 (20·5%) 1 (1·1%) 53 (21·5%) ·· 12 (16·4%)

ISUP 3 (4+3) 253 (3·4%) 96 (9·8%) 1 (1·1%) 16 (6·5%) ·· 16 (21·9%)

ISUP 4 (4+4, 3+5, and 5+3) 101 (1·4%) 63 (6·5%) 19 (20·4%) 21 (8·5%) ·· 8 (11·0%)

ISUP 5 (4+5, 5+4, and 5+5) 128 (1·7%) 62 (6·4%) 71 (76·3%) 17 (6·9%) ·· 9 (12·3%)

Data are n (%). No cancer grade information is shown for Imagebase, because the grading of this set of samples was done independently by multiple observers. Imagebase 
cancer length was assessed by LE. ISUP=International Society of Urological Pathology. *Numbers in brackets are the Gleason scores associated with the ISUP grades.

Table 1: Baseline characteristics
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region corresponding to each annotation. To obtain 
training data representing the morphological character
istics of Gleason patterns 3, 4, and 5, we extracted 
multiple partially overlapping smaller images, or patches, 
from each whole slide image. We used patch dimensions 
of 598 × 598 pixels (around 540 × 540 µm) at a resolution 
corresponding to 10× magnification (pixel size around 
0·90 µm). The process resulted in around 5·1 million 
patches usable for training a DNN (appendix p 24).

We used two convolutional DNN ensembles, each 
consisting of 30 Inception V3 models pretrained on 
ImageNet, with classification layers adapted to our 
outcome.22,23 The first ensemble performed binary 
classification of image patches into benign or malignant, 
while the second ensemble classified patches into 
Gleason patterns 3–5. To reduce label noise in the second 
ensemble, we trained it on patches extracted from cores 
containing only one Gleason pattern (ie, cores with 
Gleason score 3 + 3, 4 + 4, or 5 + 5). The test data still 
contained cores of all grades to provide a real-world 
scenario for evaluation. Each DNN in the first and the 
second ensemble thus predicted the probability of each 
patch being malignant, and whether it represented 
Gleason pattern 3, 4, or 5 (appendix p 25).

Once the probabilities for the Gleason pattern at each 
location of the biopsy core were obtained from the DNN 
ensembles, we mapped them to core-specific character
istics (ISUP grade and cancer length) using boosted 
trees, a machine learning algorithm based on decision 
tree models and gradient boosting.24 All cores in the 
training data were used for training the boosted trees. 
Specifically, aggregated features from the patch-wise 
probabilities predicted by each DNN for each core were 
used as input to the boosted trees, and the clinical 

assessment of ISUP score and cancer length were used 
as outcomes. The ISUP grade group was assigned based 
on a Bayesian decision rule of the core-level classifier to 
obtain ISUP predictions at a clinically relevant operating 
point (appendix p 14).

Statistical analysis
No formal sample size calculation was done. We 
summarised the operating characteristics of the AI system 
in a receiver operating characteristic (ROC) curve and the 
area under the ROC curve (AUC), both on core-level and 
patient-level. We then specified a range of acceptable 
sensitivities for potential clinical use and evaluated 
achieved specificity when compared to the pathology 
report. The enrichment of high-grade disease in the 
independent test data and the external validation data 
might inflate the estimated AUC values, because high 
grades might be easier to discriminate from benign cases 
compared with ISUP 1 and 2. Therefore, we also estimated 
the AUC when ISUP 3–5 cases were removed from the 
independent test and the external validation datasets.

We predicted cancer length in each core and compared 
it with the cancer length described in the pathology report. 
The comparison was done with individual and aggregated 
cores (ie, total cancer length) for each participant. Linear 
correlation was assessed in all cores and participants, as 
well as limited to positive cores and men.

Cohen’s kappa with linear weights was used for eval
uation of the AI’s performance against the 23 experienced 
urological pathologists on the Imagebase test dataset. 
Linear weights emphasise a higher level of disagreement 
of ratings further away from each other on the ordinal 
ISUP scale, in accordance with previous publications on 
the Imagebase study.21 Each of the 87 slides in Imagebase 

STHLM3 Digitised biopsy slides (n=8980)

Biopsied 
(n=83 470)

Training 
(n=6682)

Extra Training 
(n=271)

Test 
(n=1631)

Imagebase 
(n=87)

External 
(n=330)

Cancer length

No cancer 73595 (88·2%) 3724 (55·7%) 1 (0·4%) 910 (55·8%) 0 108 (32·7%)

>0–1 mm 3307 (4·0%) 915 (13·7%) 7 (2·6%) 203 (12·4%) 8 (9·2%) 33 (10·0%)

>1–5 mm 4135 (5·0%) 1239 (18·5%) 41 (15·1%) 295 (18·1%) 44 (50·6%) 77 (23·3%)

>5–10 mm 1822 (2·2%) 591 (8·8%) 85 (31·4%) 150 (9·2%) 24 (27·6%) 75 (22·7%)

>10 mm 611 (0·7%) 213 (3·2%) 111 (41·0%) 73 (4·5%) 11 (12·6%) 37 (11·2%)

Missing 0 0 26 (9·6%) 0 0 0

Cancer grade

Benign 73595 (88·2%) 3724 (55·7%) 1 (0·4%) 910 (55·8%) ·· 108 (32·7%)

ISUP 1 (3+3) 5664 (6·8%) 1530 (22·9%) 1 (0·4%) 349 (21·4%) ·· 65 (19·7%)

ISUP 2 (3+4) 2051 (2·5%) 538 (8·1%) 1 (0·4%) 142 (8·7%) ·· 63 (19·1%)

ISUP 3 (4+3) 903 (1·1%) 261 (3·9%) 2 (0·7%) 66 (4·0%) ·· 49 (14·8%)

ISUP 4 (4+4, 3+5, and 5+3) 689 (0·8%) 424 (6·3%) 45 (16·6%) 92 (5·6%) ·· 19 (5·8%)

ISUP 5 (4+5, 5+4, and 5+5) 568 (0·7%) 205 (3·1%) 221 (81·5%) 72 (4·4%) ·· 26 (7·9%)

Data are n (%). No cancer grade information is shown for Imagebase, because the grading of this set of samples was done independently by multiple observers. Imagebase 
cancer length was assessed by LE. ISUP=International Society of Urological Pathology. *Numbers in brackets are the Gleason scores associated with the ISUP grades.

Table 2: Baseline characteristics of included biopsy cores
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was graded by each of the 23 Imagebase panel 
pathologists and by the AI system. To evaluate how well 
the AI system agreed with the pathologists, we calculated 
all pairwise kappas and summarised the mean for each 
of the 23 raters. Additionally, we estimated the kappa 
with a grouping of the Gleason scores in ISUP grades 
(grade groups) 1, 2–3, and 4–5. We further estimated 
Cohen’s kappa against the study pathologist’s ISUP 
grading of the independent test dataset and the external 
validation dataset. For the external validation dataset, we 
also estimated Cohen’s kappa after calibrating the prob
abilities (ie, scaling the ISUP probabilities before 
assigning the predicted class).

We used t-distributed stochastic neighbour embedding 
and the deep Taylor decomposition to interpret the 

representation of the image data learned by the DNN 
models (appendix p 17).25

We excluded cores in which the on-slide annotations 
did not match the pathology report and cores with 
technical issues. Participants with missing patient 
characteristic data were not excluded, because these 
variables were not used in the statistical analysis.

All CIs are two-sided with 95% confidence and 
calculated from 1000 bootstrap samples. DNNs were 
implemented in Python (version 3.6.4) using TensorFlow 
(version 1.11), and all boosted trees using the Python 
interface for XGBoost (version 0.72; appendix p 5).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
Among the 59 159 STHLM3 participants, 7406 (12·5%) 
underwent systematic biopsy according to a standardised 
protocol consisting of 10 or 12 needle cores, with 12 cores 
being taken from prostates larger than 35 mL (figure 1; 
tables 1, 2). Among the biopsied participants, we 
randomly selected 1297, stratified by ISUP score, to be 
included in this study. After excluding slides with 
mismatched annotations or technical issues, we randomly 
split the remaining participants into training and test 
datasets, resulting in 6682 STHLM3 cores to be used for 
training of the AI system. We added another 271 cores 
from outside the study to the training dataset. The data 
are representative for a screening by invitation setting 
and include various diagnostically challenging cancer 
variants encountered in clinical practice (appendix p 35).

The AUC representing the ability of the AI system to 
distinguish malignant from benign cores was 0·997 
(95% CI 0·994–0·999) for the independent test dataset 
(benign = 910, malignant = 721) and 0·986 (0·972–0·996) 
for the external validation dataset (benign = 108, 
malignant = 222; figure 2). When ISUP 3–5 cases were 
removed, AUC values were 0·996 (0·992–0·999) for the 
independent test dataset and 0·980 (0·959–0·995) for 
the external validation dataset (appendix p 27). The 
performance of the AI system for cancer detection is 
summarised in table 3.

A visualisation of the estimated localisation of 
malignant tissue for an example biopsy is presented in 
the appendix (p 33) and the correlation between the 
cancer length estimates of the AI system and the 
measurements of the pathologist is presented in figure 3. 
The correlation between cancer length predicted by the 
AI and assigned by the reporting pathologist was 0·96 
(95% CI 0·95–0·97) for the independent test dataset and 
0·87 (0·84–0·90) for the external validation dataset. 
Further randomly selected example biopsies can be 
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individual participants
(A) Independent test dataset. (B) External validation dataset. Dashed grey lines represent the baseline curve 
corresponding to random guessing. AUC=area under the curve.
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inspected using TissUUmaps, an online tool for 
interactive examination of predictions alongside the core 
tissue. Results of model interpretation are shown in the 
appendix (pp 31–32).

For Gleason grading, the mean pairwise kappa achieved 
by the AI system on the 87 Imagebase cases was 0·62. 
The pathologists had values ranging from 0·60 to 0·73, 
and the study pathologist (LE) had a kappa of 0·73. When 
considering a narrower grouping of ISUP grades 
(ISUP 1, 2–3, and 4–5), which often forms the basis for 
primary treatment selection, the AI system scored higher 
than when considering all ISUP grades (figure 4A). The 
grades assigned by the panel and the AI to each Imagebase 
case are shown in the appendix (p 26).

The kappa obtained by the AI system relative to the 
pathology report in the independent test dataset of 
1631 cores was 0·83 (figure 4B). The kappa on the external 
validation dataset was 0·70 (figure 4C). By scaling the 
ISUP probabilities before assigning the predicted class 
(calibrating to the new site), the kappa increased to 0·76 
on the external validation data (figure 4D). Moreover, we 
compared the predictions of the AI system and the 
pathologist in terms of PSA relapses among the 
participants in the test dataset who underwent radical 
prostatectomy (appendix pp 22,36)

Discussion
We have shown that an AI system based on DNNs can 
achieve excellent discrimination between benign biopsy 
cores versus cores containing cancer and that the 

time-consuming task of measuring cancer length can be 
automated with high precision. Moreover, we have 
shown that an AI system can grade prostate biopsies 
within the performance range of highly experienced 
urological pathologists.

Owing to the poor discriminative ability of the PSA test 
and the systematic biopsy protocol of 10–12 needle cores, 
which is still in common use, most biopsies encountered 
in clinical practice are of benign tissue. To reduce the 
workload of assessing these samples, we evaluated the AI 
system’s potential to assist the pathologist by prescreening 
benign from malignant cores. Because the pathology 
report was used as gold standard for this evaluation, the 
AI system, by design, cannot achieve a higher sensitivity 
than the reporting pathologist. However, the sensitivity of 
the AI system could in fact be higher, because some 
malignant cores might be overlooked by the pathologist 
but detected by the AI. For example, Ozkan and 
colleagues5 evaluated the agreement of two pathologists 
in the assessment of cancer in biopsy cores. Following 
examination of 407 cases, one pathologist found cancer in 
231 cases, and the other found cancer in 202 cases. This 
finding suggests that an AI system could not only 
streamline the workflow, but also improve sensitivity by 
detecting cancer foci that would otherwise be accidentally 
overlooked.

The first attempt to use DNNs for the detection of cancer 
on prostate biopsies was reported by Litjens and 
colleagues.15 Using an approach similar to ours, but based 
on a small dataset, they could safely exclude 32% of benign 

Avoided benign 
biopsy cores, 
n (specificity)

Detected cancer 
biopsy cores, 
n (sensitivity)

Missed cores with cancer by ISUP score, n(%) Missed men 
with cancer, 
n (%)

ISUP 1 ISUP 2 ISUP 3 ISUP 4 ISUP 5

Independent test dataset

Example operating point 1—
sensitivity ≥99·9

570 (62·6%) 720 (99·9%) 0 1 (0·7%) 0 0 0 0

Example operating point 2—
sensitivity ≥99·6

788 (86·6%) 718 (99·6%) 2 (0·6%) 1 (0·7%) 0 0 0 0

Example operating point 3—
sensitivity ≥99·3

809 (88·9%) 716 (99·3%) 4 (1·1%) 1 (0·7%) 0 0 0 0

Example operating point 4—
sensitivity ≥99·0

864 (94·9%) 714 (99·0%) 4 (1·1%) 2 (1·4%) 0 0 1 (1·4%) 1 (0·5%)

External validation

Example operating point 1—
sensitivity ≥99·5

49 (45·4%) 221 (99·5%) 1 (1·5%) 0 0 0 0 1 (1·8%)

Example operating point 2—
sensitivity ≥99·1

78 (72·2%) 220 (99·1%) 2 (3·1%) 0 0 0 0 1 (1·8%)

Example operating point 3—
sensitivity ≥98·6

94 (87·0%) 219 (98·6%) 3 (4·6%) 0 0 0 0 1 (1·8%)

Example operating point 4—
sensitivity ≥97·7

97 (89·8%) 217 (97·7%) 3 (4·6%) 1 (1·6%) 1 (2·0%) 0 0 1 (1·8%)

Presented for each operating point are the number of benign biopsy cores that could be discarded from further consideration (specificity), the number of 
correctly detected malignant biopsy cores needing pathological evaluation (sensitivity), the number of missed malignant cores by ISUP score (percentage of all 
cores with the given ISUP score), and the number of missed men (percentage of all men with cancer). ISUP=International Society of Urological Pathology.

Table 3: Sensitivity and specificity at selected points on the receiver operating characteristic curves for cancer detection

For TissUUmaps see 
https://tissuumaps.research.
it.uu.se/sthlm3/

https://tissuumaps.research.it.uu.se/sthlm3/
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cores. Campanella and colleagues16 showed an AUC of 
0·991 for cancer detection on an independent test dataset 
and 0·943 on external validation data. Attempts at grading 
of prostate tissue derived from prostatectomy or based on 
tissue microarrays have also been made.14,26 None of these 
studies achieved expert urological pathologist-level 
consistency in Gleason grading, estimated tumour burden, 
or investigated grading on needle biopsies, which is 
notable because this type of sampling is used for diagnosis 
and grading in virtually every pathology laboratory 
worldwide. To the best of our knowledge, no previous 
study has used a well defined cohort of samples to estimate 
the clinical implications, with respect to key medical 

operating characteristic metrics, such as sensitivity and 
specificity.27

The strengths of our study include the use of well 
controlled data collected within the STHLM3 trial, which 
included standardised biopsy procedures, centralised 
pathology reporting, and blinding of both the urologists 
and the pathologist to clinical characteristics, such as PSA. 
The prospectively collected, population-based data cover a 
large random sample of men. Prostate cancers diagnosed 
in STHLM3 are representative for a screening-by-
invitation setting, and the data include cancer variants that 
are difficult to diagnose (pseudohyperplastic and atrophic 
carcinoma), slides that required immunohistochemistry, 
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Figure 3: Concordance between cancer lengths estimated by the AI system and the pathologist
(A) Individual cores in the independent test dataset. (B) Total tumour burden (per participant) in the independent test dataset. (C) Individual cores in the external 
validation dataset. (D) Total tumour burden (per participant) in the external validation dataset. Corresponding linear correlation coefficients computed for all cores and 
malignant cores only are shown in each plot. Datapoints in the left plot are scattered along the x-axis for clarity.
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benign mimickers of cancer, slides with thick cuts, and 
fragmented cores and poor staining. Despite these 
difficult cases, the AI system achieved excellent diagnostic 
concordance with the study pathologist. Furthermore, we 
confirmed that the enrichment of high-grade cases in our 
datasets did not result in optimistic estimates of 
discriminative performance. The study was subjected to a 
strict protocol, in which the splitting of cases into training 
and test datasets was performed at a patient level and all 

analyses were prespecified before the evaluation of the 
independent test dataset, including code for producing 
tables, figures, and result statistics. A further strength is 
the use of Imagebase, which is a unique dataset for testing 
the performance of the AI against highly experienced 
urological pathologists.

We trained the AI system using annotations from a 
single, highly experienced urological pathologist (LE). 
The decision to rely on a single pathologist for model 

Figure 4: Gleason grading performance on test data
(A) Cohen’s kappa for each pathologist ranked from lowest to the highest. Each kappa value is the average pairwise kappa for each of the pathologists compared with 
the others. To account for the natural order of the ISUP scores, we used linear weights. The AI is highlighted with a green dot and an arrow. The study pathologist (LE) 
is highlighted with an arrow. Values computed based on all five ISUP scores are plotted in red, whereas values based on a grouping of ISUP scores commonly used for 
treatment decision are shown in blue. (B) A confusion matrix on the independent test data of 1631 slides. (C) A confusion matrix on the external validation data of 
330 slides. (D) Results on external validation data following calibration of the slide-level model. The blue shading represents the number of cores in each cell of the 
matrix. This procedure did not involve any model retraining. The results are presented for an operating point achieving a minimum cancer detection sensitivity of 
99%. AI=artificial intelligence. ISUP=International Society of Urological Pathology.
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training was done to avoid presenting the system with 
conflicting labels for the same morphological patterns 
and to thereby achieve more consistent predictions. The 
study pathologist has shown high concordance with other 
experienced urological pathologists in several studies,28,29 
and therefore represents a good reference for model 
training. For model evaluation, however, it is crucial to 
assess performance against multiple pathologists.

Technical variability is introduced during slide prep
aration and scanning, which might affect the predictions 
of the AI system. Given the sensitivity of DNNs to 
differences in input data, differences across labs and 
scanners could invalidate any discriminatory capacity of 
a DNN.30 Here, we showed that the capacity of the AI in 
discriminating between benign and malignant biopsies 
decreased, but remained excellent, in the external 
validation data compared with the independent test 
dataset. We did, however, observe some reduction in 
performance with respect to cancer length predictions 
and overall Gleason grading. By contrast with cancer 
detection, in which only a handful of correctly predicted 
patches might be sufficient, cancer length estimation 
relies on all patches being correctly predicted. Thus, 
imperfect generalisation is likely to first manifest itself in 
the length estimates. The reduction in grading 
performance was most notable for ISUP 2 grades. 
However, by scaling the AI’s predictions for the different 
classes (ie, calibrating five scalar parameters to the new 
site), the results were more similar to the results achieved 
on the independent test data. This is a key observation, 
because it suggests that although some fine tuning to a 
new site or scanner is likely required to achieve optimal 
performance, this tuning is lightweight and can be done 
using little data. Notably, it does not require redevelop
ment or retraining of either the DNN models or the slide-
level models, which would be infeasible both from a 
practical and regulatory perspective. Albeit a limitation of 
the method, requirement for such calibration is not 
uncommon when using a diagnostic test at a new site 
(eg, calibrants are routinely used in laboratory diagnostics 
to diagnose and prevent site-specific differences and 
variation in test results over time) and is unlikely to 
present a major hurdle for the clinical application of AI-
based diagnostics.

A limitation of this study is the absence of exact pixel-
wise annotations, because the annotations might highlight 
regions that include a mixture of benign and malignant 
glands of different grades. To address this issue, we 
trained the algorithm on slides with pure Gleason grades, 
used a patch size large enough to cover glandular 
structures, but small enough to minimise the presence of 
mixed grades within a patch, and we focused our attention 
on core and patient performance metrics, which avoids 
caveats of patch-level evaluation and is clinically more 
meaningful. Another limitation is the difficulty of using a 
subjective measure like ISUP grade as ground truth for AI 
models. We approached this problem by evaluating the 

ISUP grade assigned by the AI against a panel of 
experienced pathologists. We also confirmed that the 
classifications of the AI did not substantially differ from 
the pathologist’s when evaluating PSA relapses among 
the operated men in the trial.

We believe that the use of an AI system like the one 
presented in this Article could increase sensitivity and 
promote patient safety by focusing the attention of the 
pathologist on regions of interest, reduce pathology 
workload by automated culling of benign biopsies, and 
reduce the high intra-observer variability in the reporting 
of prostate histopathology by producing reproducible 
decision support for grading. A further benefit is that AI 
can provide diagnostic expertise in regions where it is 
unavailable.
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