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Summary
Background The Gleason score is the strongest correlating predictor of recurrence for prostate cancer, but has 
substantial inter-observer variability, limiting its usefulness for individual patients. Specialised urological pathologists 
have greater concordance; however, such expertise is not widely available. Prostate cancer diagnostics could thus 
benefit from robust, reproducible Gleason grading. We aimed to investigate the potential of deep learning to perform 
automated Gleason grading of prostate biopsies.

Methods In this retrospective study, we developed a deep-learning system to grade prostate biopsies following the 
Gleason grading standard. The system was developed using randomly selected biopsies, sampled by the biopsy Gleason 
score, from patients at the Radboud University Medical Center (pathology report dated between Jan 1, 2012, and 
Dec 31, 2017). A semi-automatic labelling technique was used to circumvent the need for manual annotations by 
pathologists, using pathologists’ reports as the reference standard during training. The system was developed to delineate 
individual glands, assign Gleason growth patterns, and determine the biopsy-level grade. For validation of the method, a 
consensus reference standard was set by three expert urological pathologists on an independent test set of 550 biopsies. 
Of these 550, 100 were used in an observer experiment, in which the system, 13 pathologists, and two pathologists in 
training were compared with respect to the reference standard. The system was also compared to an external test dataset 
of 886 cores, which contained 245 cores from a different centre that were independently graded by two pathologists.

Findings We collected 5759 biopsies from 1243 patients. The developed system achieved a high agreement with the 
reference standard (quadratic Cohen’s kappa 0·918, 95% CI 0·891–0·941) and scored highly at clinical decision 
thresholds: benign versus malignant (area under the curve 0∙990, 95% CI 0∙982–0∙996), grade group of 2 or more 
(0·978, 0∙966–0∙988), and grade group of 3 or more (0·974, 0∙962–0∙984). In an observer experiment, the deep-
learning system scored higher (kappa 0·854) than the panel (median kappa 0·819), outperforming 10 of 15 pathologist 
observers. On the external test dataset, the system obtained a high agreement with the reference standard set 
independently by two pathologists (quadratic Cohen’s kappa 0∙723 and 0∙707) and within inter-observer variability 
(kappa 0∙71).

Interpretation Our automated deep-learning system achieved a performance similar to pathologists for Gleason 
grading and could potentially contribute to prostate cancer diagnosis. The system could potentially assist pathologists 
by screening biopsies, providing second opinions on grade group, and presenting quantitative measurements of 
volume percentages.

Funding Dutch Cancer Society.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Introduction
With 1·2 million new prostate cancer cases each year 
worldwide,1 a high incidence-to-mortality ratio, and risk 
of over diagnosis and overtreatment,2 an accurate 
assessment of patient prognosis is needed. The Gleason 
score,3 assigned by a pathologist after microscopic 
examination of cancer morphology, is the most powerful 
prognostic marker for patients with prostate cancer. 
However, substantial inter-observer and intra-observer 
variability in grading4,5 reduces its usefulness for 
individual patients. Specialised urological pathologists 
have greater concordance,6 but such expertise is not 
widely available. Prostate cancer diagnostics could thus 
benefit from robust, reproducible Gleason grading.

Treatment planning for prostate cancer is based mainly 
on the biopsy Gleason score. After the biopsy procedure, 
tissue specimens are formalin-fixed and paraffin-
embedded, cut into thin sections, stained with 
haematoxylin and eosin, and examined under a micro-
scope by a pathologist. The Gleason system stratifies the 
architectural patterns of prostate cancer into five types, 
from 1 (low risk) to 5 (high risk). The Gleason score in 
biopsies is the sum of the most common pattern and the 
highest secondary pattern (eg, 3 + 5). Growth patterns 1 
and 2 are not or rarely reported for biopsies.7

In the latest revision of the Gleason grading system, 
five prognostically distinct grade groups were intro duced;8 
assigning scores 3 + 3 and lower to group 1, 3 + 4 to group 2, 
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4 + 3 to group 3, 3 + 5, 5 + 3, and 4 + 4 to group 4, and higher 
scores to group 5. Although clinically relevant, initial 
research shows that this transition has not reduced the 
observer variability of the grading system.9,10

Artificial intelligence, particularly deep learning, has 
the potential to increase the quality of Gleason grading by 
improving consistency and offering expert-level grading 
independent of location. Deep learning has already been 
investigated and shown promising use in diagnostics 
in several medical fields,11 with examples in radiology,12 
ophthalmology,13 dermatology,14 and pathology.15 For 
prostate cancer, previous studies have applied feature-
engineering approaches to address Gleason grading.16–18 
Eventually, the field transitioned to applications of deep 
learning for detecting cancer,19,20 and later Gleason 
grading of tissue microarrays,21 prostatectomies,19 and 
biopsies.22 Studies of biopsies have focused solely on 
Gleason 3 versus Gleason 4 in small datasets.

We aimed to produce a fully automated cancer detection 
and Gleason grading system for entire prostate biopsies, 
trained without the need for manual pixel-level anno-
tations, focusing on the full range of Gleason grades, and 
evaluated on a large cohort of patients with an expert 
consensus reference standard, a separate observer study, 
and an external tissue microarray test dataset.

Methods
Study design and participants
For method development and validation, we retro-
spectively built several distinct datasets: the internal 
training, tuning, test, and observer datasets and the 
external training and test datasets.

From digital patient records of the Radboud University 
Medical Center, all pathologist reports dated between 
Jan 1, 2012, and Dec 31, 2017, for patients who underwent 
a prostate biopsy owing to a suspicion of prostate cancer 
were retrieved. The need for informed consent was waived 
by the local ethics review board (2016–2275). The reports 
were anonymised, and a text search was used to establish 
the highest mentioned Gleason score in each report. 
Patient reports were then randomly sampled using the 
train_test_split function of the scikit-learn Python package 
(version 0.20.2), stratifying by the Gleason score, resulting 
in an equal distribution of Gleason scores. Each pathology 
report was read, and for each patient, a single haematoxylin 
and eosin stained glass slide containing the most 
aggressive or prevalent part of the tumour was selected for 
scanning. Additional reports mentioning only benign 
biopsies were selected. Patients who had neoadjuvant or 
adjuvant therapy were excluded. The resulting dataset is 
further referenced to as the internal dataset.

The selected glass slides were scanned using a 
3DHistech Pannoramic Flash II 250 (3DHistech, 
Hungary) scanner at 20× magnification (pixel resolution 
0·24 µm). Each scan contained one to six unique 
biopsies, commonly with two sections per biopsy. After 
scanning, trained non-experts assessed all slides and 
coarsely outlined each biopsy, assigning each with a 
Gleason score or labelling negative on the basis of the 
pathology report. A fixed number of slides were randomly 
assigned into datasets for testing or tuning, and the 
remainder were assigned to the training dataset. 
Randomisation was stratified by patient and highest 
Gleason grade.

Research in context

Evidence before this study
We searched the online databases Medline and arXiv for the 
query “(gleason AND prostate) AND (deep learning OR 
convolutional neural network OR machine learning OR image 
analysis) NOT (MRI OR CT)”. We did not use a date restriction, 
but we limited the search to English. On June 30, 2019, this 
search generated in 278 results, of which 14 were on image 
analysis or machine-learning-based Gleason grading using 
haematoxylin and eosin histopathology. Most of these studies 
were done on preselected, smaller subimages or tissue 
microarrays, with only four covering applications on full whole 
slide images. Of those, only one focused on a small set of 
96 prostate biopsies but did not include comparisons to 
multiple pathologists. One study did include a large dataset 
and comparison to multiple pathologists but was done on 
radical prostatectomy specimens and did not include a 
consensus reference standard.

Added value of this study
We showed that a fully automated deep-learning system can 
reliably grade prostate cancer in a large cohort of patients. 

Furthermore, we proposed a new technique to train such a 
system without needing detailed manual annotations by 
pathologists, the key limiting factor within computational 
pathology.

Validation of our method was done using a representative 
dataset, and the system was compared with an expert reference 
standard set by three pathologists with a subspeciality in 
uropathology and more than 20 years of experience. In a 
separate observer experiment, we showed that the deep-
learning system reaches pathologist-level performance and is 
able to group patients in relevant risk categories.

Implications of all the available evidence
This automated deep-learning system could improve prostate 
cancer diagnostics, especially in areas where expertise is not 
readily available or where a higher efficiency is desired. The 
developed system can be used as a first reader (eg, as a 
prescreening tool) or as a second reader to support pathologists 
in their diagnosis. The results add evidence of the merits of 
automated grading systems and could increase the acceptance 
of such systems within clinical practice.
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From the internal test dataset, a subset of 100 biopsies 
was selected to be presented to a group of pathologists in 
an observer experiment, further referenced to as the 
observer dataset. The size of the observer dataset was 
decided in consultation with experts (HvB, RV, and 
CHvdK). One of the expert pathologists (CHvdK) selected 
20 benign cases manually, controlling for a broad range 
of tissue patterns, including inflammation and (partial) 
atrophy. The remaining 80 biopsies were randomly 
selected, stratified for Gleason grade group on the basis 
of the reported values of the same pathologist.

The 100 biopsies were made available through an online 
viewer, PMA.view (Pathomation, Berchem, Belgium), 
and distributed to an external panel. Panel members were 
invited to participate in this study at the United States and 
Canadian Academy of Pathology 2019 annual meeting in 
Washington, DC, USA (March 16–21, 2019). Interested 
pathologists were asked to report their current affiliation, 
their experience with Gleason grading, and the number 
of cases they viewed annually, and were subsequently 
asked to invite colleagues in their network who had 
experience in Gleason grading. All patho logists who 
graded all 100 biopsies were included. All panel members 
had experience with Gleason grading, but with a varying 
amount of experience. No time restriction was given, 
although we asked that they complete the grading within 
6 weeks.

We also evaluated the system on an external, inde-
pendent, public dataset of tissue microarrays21 to assess 
the robustness of the system to data from a different 
centre (Department of Pathology and Molecular 
Pathology, University Hospital Zurich, Switzerland).23 
One tissue core of a representative tumour area per 
patient was taken from an online database, and every 
sample that was assigned to the test dataset of Arvaniti 
and colleagues21 was used for validation, a total of 245 
cores. The complete dataset consisted of 886 tissue cores, 
each corresponding to a single patient. The cases were 
prepared and stained in an independent lab and scanned 
using a different scanner. We had no influence on the 
composition of and made no changes to the external 
dataset.

Test methods
The data acquisition of the internal dataset resulted in 
outlined biopsies with a single label per biopsy. More 
detailed annotations were required to train the deep-
learning system to segment individual glands. We 
preprocessed the biopsies of the training and tuning set 
in four steps (appendix p 2). First, tissue was automatically 
distin guished from background using a tissue segmen-
tation network.24 Second, within tissue areas, a trained 
tumour detection system20 was applied to define a rough 
outline of the tumour. The outlined tumour regions still 
contained large areas of stroma, inflam mation, or other 
non-epithelial tissue. Third, to refine the tumour masks, 
each biopsy was processed by an epithelial tissue 

detection system,25 after which tissue that was detected as 
non-epithelial tissue was removed from the tumour 
mask. Finally, detected tumour tissue was assigned a 
label on the basis of the Gleason score retrieved from the 
pathology report. A description of the individual systems 
is provided in the appendix (p 17).

We first trained a deep-learning system only on 
biopsies with a pure Gleason score (3 + 3, 4 + 4, or 5 + 5).26 
After training, this initial system was applied to the 
internal training dataset to set the reference standard. 
By use of the pathologist reports, the output was auto-
matically refined by removing clearly incorrect label 
assignments, such as cancerous glands in benign 
biopsies. Any tissue originating from benign biopsies 
detected as malignant was relabelled as hard negative 
(ie, a sample of benign tissue that was difficult for the 
system to correctly classify) to be oversampled during 
training. A connected components algorithm, based on 
the ndimage.label function from the Python SciPy 
package (version 1.2.1), was applied to ensure that each 
gland was assigned to a single class.

The patients included in the internal test dataset were 
independent of the patients in the internal training and 
tuning datasets. To create a strong reference standard, 
we asked three pathologists with a subspecialty in 
urological pathology (CHvdK, HvB, and RV) to grade the 
biopsies individually through the online viewer, PMA.
view, following the International Society of Urological 
Pathology 2014 guidelines.27 Clinical information of the 
patients was not available for the experts.

The reference standard for the internal test dataset was 
determined in three rounds. In the first round, each 
pathologist reviewed the biopsies individually. For 
positive biopsies, each pathologist was asked to report: 
primary, secondary, and tertiary Gleason grade (if 
present), total tumour volume, tumour volumes for the 
growth patterns, and the Gleason grade group. In the 
second round, each biopsy without consensus was 
regraded by the pathologist whose score differed from the 
other two. Additional to the pathologist’s initial exami-
nation, the Gleason scores of the other pathologists were 
appended anonymously. Biopsies without consensus 
after round two were discussed in a consensus meeting.

Our deep-learning system consisted of an extended 
U-Net28 that was trained on patches extracted from the 
internal training dataset. After the aforementioned semi-
automatic labelling process, the system was trained on 
the complete training dataset, including biopsies with 
mixed Gleason growth patterns. The tuning dataset was 
used to monitor performance during training and to 
prevent overfitting. Training of the system was halted if 
no performance increase was measured on the tuning 
dataset.

The label quality of the internal training dataset was 
determined by labelling the test cases using the same 
automated method. We compared the retrieved Gleason 
scores of the test dataset with the final consensus score 

See Online for appendix
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of the experts. The kappa values of this comparison acted 
as a measure of label quality.

After training, the deep-learning system was applied to 
all biopsies from the test dataset and compared with 
the reference standard. Test positivity cutoffs were 

determined before the analysis of the test dataset using 
the tuning dataset. The system determined the grade 
group of a biopsy in two steps. In the first step, the whole 
biopsy was segmented by assigning Gleason growth 
patterns to tumorous glands, and benign glands are 
classified as benign. From this segmentation, a 
normalised ratio of epithelial tissue could be calculated as 
percentages of benign, grade 3, grade 4, or grade 5. Based 
on the tuning dataset, we classified a biopsy as malignant 
if at least 10% of the epithelial tissue was predicted as 
cancer by the system (appendix p 17). In the second step, 
the grade group was determined on the basis of the 
normalised volume percentages of each growth pattern.

To apply the system to the external dataset and to account 
for stain and scanner variations, we applied an 
unsupervised normalisation algorithm based on 
CycleGANs.29 After normalisation of the external test 
images, our deep-learning system, without any modifi-
cation, was applied to the normalised test images. The 
reference standard for the external test dataset was based 
on the Gleason score. To account for this difference in test 
metrics, we determined test positive cutoffs on the external 
training data (appendix p 18). For the external test dataset, 
no consensus score was available for the two pathologists 
who graded all cases; instead, we evaluated our method 
using both pathologists in turn as the reference standard.

Statistical analysis
After consultation with experts (HvB, RV, and CHvdK), 
550 cases for the test dataset was established as a good 
balance between time investment and case diversity.

We defined the main metric as the agreement with the 
consensus reference standard, measured using quadratic 
Cohen’s kappa. To compare the performance of the system 
with the external panel of pathologists, we did multiple 
permutation tests. The test statistic was defined as the 
difference between the kappa of the deep-learning system 
and the median kappa of the pathologists. The analysis of 
the receiver operating characteristic curves was done using 
the difference in F1 score as test metric. Statistical analysis 
was done using Python 3.6 with the NumPy (1.16.3), 
pandas (0.25.1), scipy (1.2.1), scikit-learn (0.20.2) and 
matplotlib (2.2.4) packages. Further details are provided in 
the appendix (p 18).

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to 
all the data in the study and had final responsibility for 
the decision to submit for publication.

Results
After screening of 1329 slides from patients with 
malignant disease and 141 slides from patients with 
benign disease, 1410 slides were scanned. After exclusion 
of 167 slides, the internal dataset consisted of 1243 patients 

2983 records of patients with 
 malignant disease retrieved

1329 glass slides from patients with 
 malignant disease randomly  
 sampled

 141 glass slides from patients with 
 benign disease randomly 
 sampled

1844 records of patients with benign
 disease retrieved

1470 slides from patients with benign or malignant disease included

1410 slides scanned

1243 annotated slides randomly assigned to datasets (stratified by Gleason grade)

60 slides excluded 
 11 were not retrievable
 49 duplicate slides*

167 slides excluded
 2 non-prostate cancer
 96 inconclusive reports†
 49 scans invalid or empty‡
 12 from individuals who received adjuvant therapy§
 8 in which the scanner missed biopsies

 933 slides assigned to
 internal training
 dataset

4712 annoted biopsies
 included in the
 internal training
 dataset

497 annotated
 biopsies included 
 in the internal
 tuning dataset

535 biopsies graded 
 by experts and 
 included in the
 internal test
 dataset

100 biopsies graded
 by external 
 pathologists and 
 included in the 
 observer dataset

550 biopsies
 distributed
 to experts

100 slides assigned to
 internal tuning
 dataset

210 slides assigned to
 internal test
 dataset

15 biopsies excluded by experts¶

Figure 1: Study profile
*For some patients, glass slides were accidentally scanned twice; duplicates were discarded, resulting in one included 
glass slide per patient. †For some cases, the trained non-experts were unable to match the scanned biopsies to the 
description from the pathologist report; most commonly, if the report did not explicitly describe the individual 
biopsies on the glass slide. ‡Scans were excluded if the scanner failed to scan all or the majority of the tissue. §Some 
patients who had adjuvant therapy were erroneously included the automated text search. ¶Slides were excluded if at 
least one of the experts determined that the biopsy could not be reliably graded; reasons included biopsy out of focus 
or not sharp (n=5), biopsy mechanically damaged (n=1), immunohistochemistry needed (n=3), error in loading file 
(n=1), tumour area too small to grade (n=3), serial section needed (n=1),and image quality too low (n=1).
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and 5759 biopsies. The training dataset consisted of 
933 (75%) of 1243 slides (4712 biopsies), the tuning 
dataset of 100 (8%) of 1243 slides (497 biopsies), and the 
test dataset of 210 (17%) of 1243 slides (550 biopsies; 
figure 1). The observer dataset was sampled from the test 
dataset and consisted of 100 biopsies from 78 patients.

After the first round of grading of biopsies in the 
internal test dataset, 333 (61%) of 550 cases had complete 
consensus. The three experts’ inter-rater agreement was 
high (quadratic Cohen’s kappa of 0·925). The majority 
vote was taken for some slides: 11 (2%) of 550 cases with 
an agreement on grade group, but a difference in Gleason 
pattern order (eg, 5 + 4 versus 4 + 5); 11 (2%) cases with an 
equal grade group, but a disagreement on Gleason score; 
and 110 (21%) cases for which two pathologists agreed 
and the third had a maximum deviation of one grade 
group. Cases with a disagreement on malignancy were 
always flagged for a second read. Immuno histochemistry 
was used in seven (1%) of 550 cases to determine the 
benign or malignant label as it was present in the original 
report. 15 (3%) of the 550 cases were excluded by the 
experts because they could not be reliably graded 
(appendix p 14). In the second round, 63 (11%) of 
550 cases were regraded. 27 (5%) of 550 cases of biopsies 
without consensus after round two were discussed in a 
consensus meeting (appendix p 15). Grade group 
distribution and confusion matrices are presented in the 
appendix (p 4).

To get an estimate of label noise, the reference standard 
was compared with labels generated by the semi-
automatic method; the accuracy of the retrieved labels 
versus the reference was 0·675 (kappa 0·819) for Gleason 
score and 0·720 (kappa 0·853) for grade group.

On the 535 biopsies of the internal test dataset, our 
deep-learning system achieved an agreement of 0·918 
(quadratic Cohen’s kappa, 95% CI 0·891–0·941) with the 
con sensus grade group. Most errors by the deep-learning 
system are made in distinguishing between grade 
group 2 and 3, and grade group 4 and 5 (figure 2, table 1).

In the internal test dataset, the deep-learning system 
missed 13 malignant cases, of which all but one were 
determined as grade group 1 by the experts (figure 2). In 
12 of these cases, the system detected a tumour, but the 
predicted volume was below our threshold for malignancy.

Receiver operating characteristic curve analysis on 
three clinically relevant cutoffs showed the ability of the 
system to group cases in risk categories with high 
accuracy (figure 3; table 2). The decision threshold of the 
system can be tuned to correctly predict 99% of biopsies 
containing tumour with a specificity of 82%.

For the observer study, 13 pathologists and 
two patho logists in training from 14 independent labs and 
ten countries individually graded all 100 biopsies following 
the International Society of Urological Pathology 2014 
guidelines. This external panel showed a median inter-
rater agreement of 0·819 (quadratic kappa, 95% CI 
0·726–0·869) on Gleason grade group with the consensus 
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Figure 2: Confusion matrices on Gleason grade group
Data are shown for the whole internal test dataset (A, B) and the observer dataset (C, D). Agreement between the 
system’s predictions and the reference standard is shown in quadratic Cohen’s kappa above each matrix. Absolute 
frequency (A, C) and relative frequency (B, D) are shown. For the relative frequency, the number of cases in each 
cell is divided by the total cases in each row.

Cases, n (%) Accuracy Precision Recall Specificity Negative 
predictive value

Internal test dataset

Negative 250 (45%) 0∙953 0∙948 0∙952 0∙954 0∙958

Grade group 1 75 (14%) 0∙912 0∙700 0∙653 0∙954 0∙944

Grade group 2 52 (9%) 0∙905 0∙511 0∙442 0∙954 0∙941

Grade group 3 55 (10%) 0∙901 0∙524 0∙400 0∙958 0∙933

Grade group 4 35 (6%) 0∙912 0∙333 0∙343 0∙952 0∙954

Grade group 5 68 (12%) 0∙931 0∙670 0∙897 0∙936 0∙984

Observer dataset

Negative 20 (20%) 0∙960 0∙944 0∙850 0∙988 0∙963

Grade group 1 12 (12%) 0∙850 0∙400 0∙500 0∙898 0∙929

Grade group 2 16 (16%) 0∙800 0∙375 0∙375 0∙881 0∙881

Grade group 3 22 (22%) 0∙790 0∙533 0∙364 0∙910 0∙835

Grade group 4 10 (10%) 0∙860 0∙357 0∙500 0∙900 0∙942

Grade group 5 20 (20%) 0∙840 0∙591 0∙650 0∙887 0∙910

For each grade group, the metrics are calculated individually, using cases from that group as positive and the other cases 
as negative samples. The deep-learning system was not optimised for specific Gleason grade groups but was optimised 
over the whole range of Gleason grades. Confusion matrices on the deep-learning system’s prediction versus the 
reference standard are shown in figure 2.

Table 1: Class-wise classification metrics of the deep-learning system for the internal test and observer 
datasets
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analysis on three clinically 

relevant cutoffs
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(appendix p 5). The system achieved a kappa value of 
0·854 (quadratic kappa, 0·777–0·914) on the cases of the 
observer dataset, scoring higher than the median value of 
the panel and outperforming 10 of the 15 panel members 
(appendix p 5). The perfor mance of the deep-learning 
system was better than that of pathologists with less than 
15 years of experience (two-sided permutation test, 
p=0·036) and scores not significantly different than 
pathologists with more than 15 years of experience (two-
sided permutation test, p=0·96; appendix p 5). To exclude 
bias towards the experts in our results, we computed the 
inter-rater agreement between all panel members 
independently of the reference standard. We then 
computed the agreement of the system with all members 
of the panel (appendix p 7). Sorted by the median kappa 
value, the deep-learning system had the third highest 
inter-rater agreement score (appendix p 7).

The deep-learning system scores better than three 
pathologists of the panel but lower than most on accuracy 
(appendix p 6). The lower accuracy is mostly caused by 
one-off errors between grade groups 2 versus 3 and 4 
versus 5 (figure 2). A two-sided permutation test on the 
difference between system accuracy and the median of 
the panel showed no significant difference (p=0·15). See 
the appendix (p 10) for example cases.

After receiver operating characteristic analysis of the 
observer dataset, a two-sided permutation test on the 
median F1 score showed no difference between the deep-
learning system and the panel for both malignant versus 
benign (p=0·70), grade group 2 as a cutoff (p=0·84), and 
grade group 3 as a cutoff (p=0·65; figure 3; table 2).

The external test dataset contained 245 cores that were 
independently graded by two pathologists (inter-rater 

agreement quadratic Cohen’s kappa 0·71). Concerning the 
two pathologists, the system obtained a 0·723 and 0·707 
quadratic kappa on Gleason score. A receiver operating 
characteristic analysis for relevant decision thresholds was 
also done for the external test set (figure 3; table 2). Overall, 
the deep learning system performed comparably to the 
two pathologists who set the reference standard.

Discussion
We have developed a fully automated method to grade 
prostate biopsies and have shown that this method can 
achieve a performance similar to pathologists on both 
the internal and external test datasets. The performance 
of the deep-learning system could only reliably be 
assessed by use of an expert reference standard. We 
asked three expert urological pathologists to grade the 
complete test dataset, which resulted in a minimum of 
three independent reads for every case. The deep-
learning system achieved a high agreement (quadratic 
kappa of 0·918) with the reference standard. We also 
compared the system with a panel of independent 
pathologists and pathologists in training. In this observer 
dataset, the deep-learning system outper formed ten of 
15 panel members. On the external test dataset, the 
system showed it could generalise to external and unseen 
data. The system scored comparably to the results 
attained by Arvaniti and colleagues21 (quadratic kappa, 
0·723 and 0·707 vs 0·71 and 0·75) and within inter-
observer variability of the pathologists who set the 
reference standard (kappa 0·71), although our system 
was not trained on data from that set.

The training data was labelled in a semi-supervised 
way, saving resources that would otherwise have been 

Number of 
cases

Area under the curve 
(95% CI)

F1 score Accuracy Precision Recall Specificity Negative 
predictive value

Internal test set

Benign vs malignant 250/285 0∙990 (0∙982–0∙996) 0∙956 0∙953 0∙958 0∙954 0∙952 0∙948

Benign and grade group 1 vs grade group ≥2 325/210 0∙978 (0∙966–0∙988) 0∙915 0∙933 0∙907 0∙924 0∙938 0∙950

Benign and grade group 1–2 vs grade group ≥3 377/158 0∙974 (0∙962–0∙984) 0∙887 0∙931 0∙858 0∙918 0∙936 0∙964

Observer set

Benign vs malignant 20/80 0∙984 (0∙971–1∙000) 0∙975 0∙960 0∙963 0∙988 0∙850 0∙944

Benign and grade group 1 vs grade group ≥2 32/68 0∙904 (0∙831–0∙964) 0∙904 0∙870 0∙910 0∙897 0∙812 0∙788

Benign and grade group 1–2 vs grade group ≥3 48/52 0∙899 (0∙833–0∙956) 0∙854 0∙850 0∙863 0∙846 0∙854 0∙837

External test set (pathologist 1 as reference standard)

Benign vs malignant 12/233 0∙980 (0∙967–0∙997) 0∙983 0∙967 0∙991 0∙974 0∙833 0∙625

Benign and grade group 1 vs grade group ≥2 91/154 0∙878 (0∙834–0∙920) 0∙851 0∙792 0∙772 0∙948 0∙527 0∙857

Benign and grade group 1–2 vs grade group ≥3 119/126 0∙892 (0∙851–0∙930) 0∙844 0∙824 0∙779 0∙921 0∙723 0∙896

External test set (pathologist 2 as reference standard)

Benign vs malignant 10/235 0∙988 (0∙984–1∙000) 0∙987 0∙976 1∙000 0∙974 1∙000 0∙625

Benign and grade group 1 vs grade group ≥2 40/205 0∙869 (0∙821–0∙916) 0∙898 0∙837 0∙937 0∙863 0∙700 0∙500

Benign and grade group 1–2 vs grade group ≥3 69/176 0∙855 (0∙806–0∙903) 0∙825 0∙767 0∙899 0∙761 0∙783 0∙562

For this analysis, the threshold of the deep-learning system was not optimised for the different decision cutoffs.

Table 2: Classification performance metrics for the three datasets using the default decision threshold of the deep-learning system
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spent in manually labelling slides. Moreover, it is often 
practically unfeasible to precisely annotate the vast 
amounts of data required for deep learning, even though 
unannotated or sparsely annotated data is often readily 
available in pathology archives. One limitation of this 
method is that it can introduce label noise in the training 
dataset. However, the ability of deep-learning systems to 
handle substantial amounts of label noise is well known.30

The black-box characteristic of deep learning is often 
mentioned as a drawback of such systems, especially for 
medical decision making. We addressed this drawback 
by having our system show predictions at multiple 
abstraction levels, instead of using an additional learned 
model on top of the deep-learning system. The precise 
gland-level segmentations of the developed system made 
it possible to use a simple ruleset on grade volume 
percentages to obtain the biopsy-level grade, similar to 
the one described in the Gleason grading system. This 
approach allows pathologists to assess whether the 
epithelium was correctly classified, whether the system 
missed certain glands, and the grades assigned to 
individual or groups of glands. As such, our system 
provides a higher level of interpretability compared with 
competing approaches.10

Given the high prevalence of prostate cancer, reducing 
workload for pathologists is of clinical value. In the test 
dataset, our deep-learning system achieved an AUC of 
0·990 on determining the malignancy of a biopsy, on the 
observer set an AUC of 0·984. Furthermore, the system 
can be tuned to achieve a sensitivity of 99%. As such, our 
system could be implemented as a prescreening triage 
tool within pathology labs, giving priority to high-grade 
biopsies and filtering out low-risk benign biopsies.

More work is needed to increase the discrimination 
power of the system between Gleason grade groups 2 
and 3 and groups 4 and 5. The boundaries between 
group 2 and 3 are defined by the relative volume 
percentages of the Gleason growth patterns, which 
makes an accurate estimate of those volumes essential 
for correct classification. Group 4 versus 5 is complicated 
by a wide range of Gleason scores that fall under these 
two groups (3 + 5, 5 + 3, 4 + 4, 4 + 5, 5 + 4, and 5 + 5). 
Discrepancies can also be related to the way the system 
and pathologists differ in estimating the relative volume 
of growth patterns. The system counts the exact area of 
the individual glands, whereas a pathologist assesses the 
volume more qualitatively.

Our results extend previous work on prostate cancer 
detection19,20 and automated Gleason grading.10,21,22 We 
extend on these works by focusing on automated Gleason 
grading for prostate biopsies, the strongest histological 
correlating predictor of recurrence for patients with 
prostate cancer, of which the grading system differs from 
prostatectomies. Furthermore, by including both benign 
biopsies and biopsies from the full spectrum of Gleason 
grades, we created a system that is usable as a 
prescreening tool and as a second reader.

Grading of the biopsies, both by the experts and the 
external panel, was done through digital viewing of the 
slides. For the external panel, not all members had 
previous experience with digital viewing or with the 
digital viewer used in this study. Owing to this 
inexperience, we cannot know whether it affected their 
grading. Nonetheless, research has shown that digital 
viewing is non-inferior to microscopy.31

Before our system can be used in clinical practice, 
some limitations must be addressed. First, the data that 
were used to develop the deep-learning system originated 
from a single centre. Although the performance on the 
external test dataset is within the range of inter-observer 
variability, including data from multiple centres, with 
different staining protocols and whole slide scanners, 
could further increase the robustness of the system. 
Second, we focused on the grading of acinar adeno-
carcinoma in prostate biopsies, although other tumour 
types and foreign tissue can be present in prostate 
biopsies (eg, colon glands, which should be identified 
and excluded for grading). Additionally, other prognostic 
information could be present in the biopsies that we did 
not extract (eg, the detection of intraductal carcinoma).32 
Finally, in this study, each biopsy is treated inde-
pendently, both by the pathologists and by the deep-
learning system. In clinical practice, multiple biopsies 
are sampled from different regions of the prostate. An 
update to the deep-learning system could take multiple 
biopsies into account and give a grade group prediction 
at the patient level.

The developed system will be made available for 
scientific and non-commercial use, through the 
Radboudumc Computational Pathology Group website. 
Furthermore, through a grand challenge on Gleason 
grading, we will publish a part of our data for others to 
use in developing new methods for automated Gleason 
grading.

Our automated deep-learning system achieved a 
performance similar to pathologists in terms of Gleason 
grading. With further evaluation, the system could assist 
pathologists by screening biopsies, providing second 
opinions on grade group, and presenting quantitative 
measurements of volume percentages.
Contributors
WB selected data, did the experiments, analysed the results, and wrote 
the manuscript. HP was involved with the data collection and 
experiments. HvB, RV, and CH-vdK graded all cases in the test dataset. 
TdB was involved with the application of the method to the external data. 
GL, CH-vdK., JvdL, and BvG supervised the work and were involved in 
setting up the experimental design. All authors reviewed the manuscript 
and agreed with its contents.

Declaration of interests
WB and HP report grants from the Dutch Cancer Society, during the 
conduct of the study. BvG reports that they are co-founder of, 
shareholder of, and earn royalties from Thirona, grants and royalties 
from Delft Imaging Systems, and grants from MeVis Medical Solutions, 
outside the submitted work. JvdL reports personal fees from Philips, 
ContextVision, and AbbVie and grants from Philips and Sectra, outside 
the submitted work. GL reports grants from the Dutch Cancer Society, 

For Automated Gleason 
Grading see https://www.

computationalpathologygroup.
eu/software/automated-

gleason-grading/

https://grand-challenge.org


Articles

www.thelancet.com/oncology   Published online January 8, 2020    https://doi.org/10.1016/S1470-2045(19)30739-9 9

during the conduct of the study, and grants from Philips Digital 
Pathology Solutions and personal fees from Novartis, outside the 
submitted work. All other authors declare no competing interests.

Acknowledgments
This study was funded by a grant from the Dutch Cancer Society (KWF), 
grant number KUN 2015-7970. We thank the following pathologists and 
pathologists in training for participating in our study as part of the panel: 
Paulo G. O. Salles (Instituto Mário Penna, Belo Horizonte, Brazil); 
Vincent Molinié (CHU de Martinique, Université des Antilles, Fort de 
France, Martinique); Jorge Billoch-Lima, (HRP Labs, San Juan, 
Puerto Rico); Ewout Schaafsma (Radboud University Medical Center, 
Nijmegen, The Netherlands); Anne-Marie Vos (Radboud University 
Medical Center, Nijmegen, The Netherlands); Xavier Farré (Department 
of Health, Public Health Agency of Catalonia. Lleida, Catalonia, Spain); 
Awoumou Belinga Jean-Joël (Department of Morphological Sciences and 
Anatomic Pathology, Faculty of Medicine and Biomedical Sciences, 
University of Yaounde 1, Cameroon); Joëlle Tschui (Medics Pathologie, 
Bern, Switzerland); Paromita Roy (Tata Medical Center, Kolkata, India); 
Emílio Marcelo Pereira (Oncoclínicas group, Brazil); Asli Cakir (Istanbul 
Medipol University School of Medicine, Pathology Department, Istanbul, 
Turkey); Katerina Geronatsiou (Centre de Pathologie, Hopital Diaconat 
Mulhouse, France); Günter Saile, (Histo- and Cytopathology, labor team 
w ag, Goldach SG, Switzerland); Américo Brilhante, (SalomãoZoppi 
Diagnostics, São Paulo, Brazil); Guilherme Costa Guedes Pereira 
(Laboratory Histo Patologia Cirúrgica e Citologia, João Pessoa-PB, 
Brazil). We also thank Jeffrey Hoven for assisting with the data collection 
and scanning, and Milly van de Warenburg, Nikki Wissink, and 
Frederike Haverkamp for their help making the manual annotations.

References
1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 

Global cancer statistics 2018: GLOBOCAN estimates of incidence 
and mortality worldwide for 36 cancers in 185 countries. 
CA Cancer J Clin 2018; 68: 394–424.

2 Schröder FH, Hugosson J, Roobol MJ, et al. Prostate-cancer 
mortality at 11 years of follow-up. N Engl J Med 2012; 366: 981–90.

3 Epstein JI. An update of the Gleason grading system. J Urol 2010; 
183: 433–40.

4 Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, 
Epstein JI. Interobserver reproducibility of Gleason grading of 
prostatic carcinoma: general pathologist. Hum Pathol 2001; 
32: 81–88.

5 Egevad L, Ahmad AS, Algaba F, et al. Standardization of Gleason 
grading among 337 European pathologists. Histopathology 2013; 
62: 247–56.

6 Allsbrook WC Jr, Mangold KA, Johnson MH, et al. Interobserver 
reproducibility of Gleason grading of prostatic carcinoma: urologic 
pathologists. Hum Pathol 2001; 32: 74–80.

7 Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL. The 2005 
International Society of Urological Pathology (ISUP) consensus 
conference on Gleason grading of prostatic carcinoma. 
Am J Surg Pathol 2005; 29: 1228–42.

8 Epstein JI, Zelefsky MJ, Sjoberg DD, et al. A contemporary prostate 
cancer grading system: a validated alternative to the Gleason score. 
Eur Urol 2016; 69: 428–35.

9 Ozkan TA, Eruyar AT, Cebeci OO, Memik O, Ozcan L, 
Kuskonmaz I. Interobserver variability in Gleason histological 
grading of prostate cancer. Scand J Urol 2016; 50: 420–24.

10 Nagpal K, Foote D, Liu Y, et al. Development and validation of a 
deep learning algorithm for improving Gleason scoring of prostate 
cancer. NPJ Digit Med 2019; 2: 48.

11 Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in 
medical image analysis. Med Image Anal 2017; 42: 60–88.

12 Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer 
screening with three-dimensional deep learning on low-dose chest 
computed tomography. Nat Med 2019; 25: 954–61.

13 De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically 
applicable deep learning for diagnosis and referral in retinal 
disease. Nat Med 2018; 24: 1342–50.

14 Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level 
classification of skin cancer with deep neural networks. Nature 
2017; 542: 115–18.

15 Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. 
Diagnostic assessment of deep learning algorithms for detection of 
lymph node metastases in women with breast cancer. JAMA 2017; 
318: 2199–210.

16 Naik S, Doyle S, Feldman M, Tomaszewski J, Madabhushi A. 
Gland segmentation and computerized gleason grading of prostate 
histology by integrating low-, high-level and domain specific 
information. Proceedings of 2nd Workshop on Microsopic Image 
Analysis with Applications in Biology; Piscataway, NJ, USA; 2007.

17 Gertych A, Ing N, Ma Z, et al. Machine learning approaches to 
analyze histological images of tissues from radical prostatectomies. 
Comput Med Imaging Graph 2015; 46: 197–208.

18 Nguyen TH, Sridharan S, Macias V, et al. Automatic Gleason 
grading of prostate cancer using quantitative phase imaging and 
machine learning. J Biomed Opt 2017; 22: 36015.

19 Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade 
computational pathology using weakly supervised deep learning 
on whole slide images. Nat Med 2019; 25: 1301–09.

20 Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool 
for increased accuracy and efficiency of histopathological diagnosis. 
Sci Rep 2016; 6: 26286.

21 Arvaniti E, Fricker KS, Moret M, et al. Automated Gleason grading 
of prostate cancer tissue microarrays via deep learning. Sci Rep 
2018; 8: 12054.

22 Lucas M, Jansen I, Savci-Heijink CD, et al. Deep learning for 
automatic Gleason pattern classification for grade group 
determination of prostate biopsies. Virchows Arch 2019; 475: 77–83.

23 Zhong Q, Guo T, Rechsteiner M, et al. A curated collection of tissue 
microarray images and clinical outcome data of prostate cancer 
patients. Sci Data 2017; 4: 170014.

24 Bándi P, van de Loo R, Intezar M, et al. Comparison of different 
methods for tissue segmentation in histopathological whole-slide 
images. 2017 IEEE 14th International Symposium on Biomedical 
Imaging; Melbourne; April 18–21, 2017 (591–95).

25 Bulten W, Bándi P, Hoven J, et al. Epithelium segmentation using 
deep learning in H&E-stained prostate specimens with 
immunohistochemistry as reference standard. Sci Rep 2019; 9: 864.

26 Bulten W, Pinckaers H, Hulsbergen-van de Kaa C, Litjens G. 
Automated gleason grading of prostate biopsies using deep 
learning. United States and Canadian Academy of Pathology 
108th Annual Meeting; Washington, DC; 2019 (abstr 1467).

267 Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, 
Humphrey PA. The 2014 International Society of Urological 
Pathology (ISUP) consensus conference on Gleason grading of 
prostatic carcinoma: definition of grading patterns and proposal 
for a new grading system. Am J Surg Pathol 2016; 40: 244–52.

28 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks 
for biomedical image segmentation. Cham: Springer International 
Publishing, 2015.

289 de Bel T, Hermsen M, Kers J, van der Laak J, Litjens G. 
Stain-transforming cycle-consistent generative adversarial networks 
for improved segmentation of renal histopathology. In: Cardoso MJ, 
Aasa F, Ben G, et al, eds. Proceedings of the 2nd International 
Conference on Medical Imaging with Deep Learning; Proceedings 
of Machine Learning Research. 2019. 151–63.

30 Rolnick D, Veit A, Belongie S, Shavit N. Deep learning is robust to 
massive label noise. arXiv 2018; published online Feb 26. 1705.10694 
(preprint).

31 Mukhopadhyay S, Feldman MD, Abels E, et al. Whole slide imaging 
versus microscopy for primary diagnosis in surgical pathology: 
a multicenter blinded randomized noninferiority study of 1992 
cases (pivotal study). Am J Surg Pathol 2018; 42: 39–52.

32 Kweldam CF, Kümmerlin IP, Nieboer D, et al. Disease-specific 
survival of patients with invasive cribriform and intraductal prostate 
cancer at diagnostic biopsy. Mod Pathol 2016; 29: 630–36.


	Automated deep-learning system for Gleason grading ofprostate cancer using biopsies: a diagnostic study
	Introduction
	Methods
	Study design and participants
	Test methods
	Statistical analysis
	Role of the funding source

	Results
	Discussion
	Acknowledgments
	References


