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Abstract
Islands of CD123high cells have been commonly described in the bone marrow of patients with chronic myelomonocytic
leukemia (CMML). Using a multiparameter flow cytometry assay, we detected an excess of CD123+ mononucleated cells
that are lineage-negative, CD45+, CD11c−, CD33−, HLA-DR+, BDCA-2+, BDCA-4+ in the bone marrow of 32/159 (20%)
patients. Conventional and electron microscopy, flow cytometry detection of cell surface markers, gene expression analyses,
and the ability to synthesize interferon alpha in response to Toll-like receptor agonists identified these cells as bona fide
plasmacytoid dendritic cells (pDCs). Whole-exome sequencing of sorted monocytes and pDCs identified somatic mutations
in genes of the oncogenic RAS pathway in the two cell types of every patient. CD34+ cells could generate high amount of
pDCs in the absence of FMS-like tyrosine kinase 3-ligand (FLT3L). Finally, an excess of pDCs correlates with regulatory T
cell accumulation and an increased risk of acute leukemia transformation. These results demonstrate the FLT3L-independent
accumulation of clonal pDCs in the bone marrow of CMML patients with mutations affecting the RAS pathway, which is
associated with a higher risk of disease progression.

Introduction

Plasmacytoid dendritic cells (pDCs) are bone-marrow
derived cells whose development relies mostly on Fms-
like tyrosine kinase 3 ligand (FLT3L) [1] and the master
transcription factor TCF4 [2]. Mature pDCs lack most of
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the lineage surface markers for B, T, NK cells and
monocytes but express HLA-DR, CD123 (Interleukin-3
receptor alpha, IL-3Rα), CD303 (BDCA2) and CD304
(BDCA4/Neuropilin-1) [3]. These cells are the most
important source of type I interferons (IFN-I) following
recognition of viruses or nucleic acids through Toll-like
receptor-7 (TLR7) and TLR9 [4]. They can also capture,
process and present or cross-present antigens [5], bridging
innate and adaptive immune response [6]. pDCs infiltrate
a variety of human neoplasms [7]. In most cases, these
tumor-associated pDCs are defective in IFN-I production
and exert a suppressive or tolerogenic function, primarily
by inducing IL-10 producing regulatory T cells [8–11].

Chronic myelomonocytic leukemia (CMML) is a mye-
loid malignancy associated with the age-related accumula-
tion of somatic mutations in a hematopoietic stem or
progenitor cell (HSPC) [12]. This disease associates cellular
dysplasia with proliferative features including monocytosis
[13]. Although not specific, the high incidence of TET2,
SRSF2, ASXL1 and signaling mutations (NRAS, KRAS and
CBL) is characteristic of this disease [14, 15]. Myeloid
progenitors commonly demonstrate hypersensitivity to
granulocyte macrophage-colony stimulating factor (GM-
CSF) [16, 17]. Median overall survival of CMML patients
ranges between 15 and 30 months. Approximately 25% of
these patients die from disease transformation into acute
myeloid leukemia (AML) [18]. Allogeneic stem cell trans-
plantation is a potentially curative therapeutic option [19],
while cytoreductive drugs and hypomethylating agents have
limited impact on long-term outcome [20].

In the 1980s, pathologists identified the presence of
irregular islands of CD123-positive cells in the bone
marrow and tissues of a fraction of patients with acute
and chronic myeloid neoplasms, with a strong pre-
dominance in CMML [21–24]. These cells were initially
described as plasmacytoid T cells because of their plasma
cell-like morphology and their expression of CD4 [25],
then as plasmacytoid monocytes because of their
expression of monocyte markers [26]. Their precise
identity, the mechanisms promoting their generation and
their impact on disease evolution had not been explored
thus far.

We show that CD123+ cells infiltrating the
bone marrow of CMML patients are bona fide pDCs
according to the most recent classification, and belong
to the leukemic clone [27, 28]. The emergence of
pDC islands is preferentially observed in RAS-mutated
CMML, in which stem and progenitor cell differentiation
is skewed toward pDC generation in a FLT3L-
independent manner. An increase in the number of
pDCs correlates with an increased risk of leukemic
transformation, bringing novel insights into CMML
pathophysiology.

Patients and methods

Cell collection

Two cohorts of 159 (French cohort) and 202 (US cohort)
patients, respectively, were studied after approval by institu-
tional review boards. The characteristics of these cohorts are
presented in Tables 1 and S1. Disease diagnosis fulfilled the
WHO 2016 classification criteria [13]; cytogenetic risk was
stratified according to the CMML-specific prognostic scoring
system (CPSS) [29], and samples were collected after
obtaining written informed consent. The French cohort was
used to perform a prospective flow cytometry analysis of fresh
samples and to characterize CD123-positive cells in the bone
marrow and peripheral blood of CMML patients. In this
cohort, sorted monocyte DNA, available on 126 (79%)
patients, was subjected to a 38-gene panel targeted capture
assay (Table S2). The US cohort was used to perform a ret-
rospective immunohistochemical analysis of bone marrow
trephine biopsies collected in all patients at CMML diagnosis.
In this cohort (median follow-up was 81 months), bone mar-
row mononucleated cell (BMMC) DNA, simultaneously col-
lected on 167 (83%) patients, was subjected to a 29-gene panel
targeted capture assay (Table S2) [30]. The availability of
frozen PBMC for 38 patients of this cohort allowed correlating
pDC status in trephine biopsies and in peripheral blood by
flow cytometry.

Flow cytometry

BMMC and peripheral blood mononucleated cells (PBMC)
were incubated for 15min at room temperature with Fc
blocking reagent (Miltenyi Biotech) before being stained for
45–60min at 4 °C with antibodies. Subsequent intracellular
staining was obtained by cell fixation with Perm/Fix (BD
Biosciences) for 20min at room temperature and Perm/Wash
washing before incubation with antibodies for 60min at 4 °C.
Flow analysis was performed on a BD LSRFortessa X-20 with
BD FACSDiva software (BD biosciences). pDCs (Figure S1
and supplemental methods) were quantified as the fraction of
PBMC or BMMC, whose count was refined using a CD33 vs.
side structure (SSC) plot, which enables elimination of resi-
dual dysplastic immature myeloid cells. We used Kaluza
(Beckman Coulter, Brea, California, USA) for flow analyses.
We calculated the cut-off value defining an increased fraction
of pDCs in mononucleated cells to be 1.2% in the bone
marrow and 0.6% in the peripheral blood (see results). Anti-
bodies and cell sorting methods are in supplemental methods.

Cell morphology and immunohistochemistry

Sorted pDCs were analyzed on May–Grunwald Giemsa
stained cytospins (n= 10, 7 CMML and 3 controls). For
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ultrastructural studies (n= 4, 3 CMML and 1 control), they
were fixed in 1.6% glutaraldehyde (v/v in 0.1 M phosphate
buffer) and post‐fixed with 2% osmium tetroxide (w/v in
0.1 M phosphate buffer). Following dehydration through a
graded ethanol series, they were embedded in Epon™ 812
and ultrathin sections were stained with standard uranyl
acetate and lead citrate. Images were taken using a Tecnai
12 electron microscope (FEI, Eindhoven, The Netherlands).
Immunohisto-chemistry was performed on formalin-fixed
and decalcified paraffin-embedded bone marrow biopsies
(details in supplemental methods). pDC-rich samples were
defined as those with >5% of the BM cells demonstrating a
pDC morphology and expressing CD123.

pDC generation and stimulation

BMMC and PBMC (2 × 106 cells/mL) were incubated for
3 h at 37 °C with TLR agonists, to which Brefeldin A was
added for three additional hours. After washing with cold
PBS (Gibco), cells were stained extracellularly, fixed, per-
meabilized and stained intracellularly. The procedure for
analysis of intracellular cytokines is detailed in the sup-
plemental methods section. To generate pDCs, CD34+ cells
were cultured in X-vivo 15 (Lonza, Amboise, France)
supplemented with insulin 10 ng/mL, liposomes 20 ng/mL,
thrombopoietin (TPO, 50 ng/mL), stem cell factor (SCF,
50 ng/mL), FLT3L 100 ng/mL and interleukin-3 (IL-3,
20 ng/mL), prior to the flow cytometry-based detection and
analysis of generated pDCs (see supplemental methods).

Cytokine measurement in bone marrow
supernatants

Fresh bone marrow samples were centrifuged at 150 × g for
10 min, and supernatants were collected and frozen at
−80 °C until analysis using mesoscale (Meso Scale Diag-
nostics, Rockville, Maryland, USA) technology with two 9-
plex ((IFNα, IL1Rα, FLT3L, GM-CSF, CXCL12, VEGF,
TNFα, IL10 et IL17α) and (IL1β, IL6, IL8, IL4, IL2Rα,
IFNγ, M-CSF, MIP-1β (CCL4), TPO) panels.

Exome and gene expression analyses

Whole-exome sequencing was performed on DNA col-
lected from sorted bone marrow T-cells (CD3+), monocytes
(CD14+) and pDCs (Lin− HLA-DR+ CD123high CD11c−

BDCA4+). Total RNA was isolated from sorted cells with
Single Cell RNA Purification Kit (Norgen Biotek Corp,
Canada). Detailed methods for RNA sequencing are in the
supplemental material. Differential expression analysis was
performed in samples from the same batch, using the
negative binomial generalized linear model fitting and Wald
statistics from DESeq2* package in R software [31].

Differentially expressed genes (DEGs) were selected from
three pairwise comparisons: pDC-rich vs. pDC-poor
CMML, pDC-rich CMML vs. healthy donor pDCs, and
pDC-poor CMML vs. healthy donor pDCs. A multiple
testing correction on p-values was applied to filter out
DEGs with an adjusted p-value over 0.05 and an absolute
logFoldChange over 1, then a supervised hierarchical
clustering of the 13 samples of pDCs represented in a
heatmap.

Statistical analyses

Given the smaller number of samples, we used non-
parametric tests, including Mann–Whitney test to compare
continuous variables, Fischer exact to compare categorical
variables and Kendall’s correlation test to compare ordinal
variables. The Kaplan–Meier method was used to evaluate
survival data from diagnosis to death or last follow-up.
Cumulative incidence of AML transformation was com-
puted considering death as a competing risk and univariate
and multivariate analyses performed with Fine & Gray’s
proportional subhazards model. Multivariate analysis was
performed on all variables with significant impact in uni-
variate analyses, followed by backward stepwise selection.
All statistical analyses were two-sided, retaining p < 0.05 as
statistically significant and were deduced using STATA or
Prism 7 applications.

Results

CD123-positive cells infiltrate hematopoietic tissues
in a fraction of CMML patients

CD123-positive cells that form irregular nodules in the bone
marrow of a fraction of CMML patients (Fig. 1a) were
suggested to be pDCs. To further explore the presence of
pDCs in bone marrow aspirate and peripheral blood, we set
up a multiparametric flow cytometry assay to detect
lineage-negative (CD3−, CD14−, CD15−, CD16−, CD19−,
CD24−), CD33-negative and CD11c-negative mono-
nucleated cells expressing CD45, CD123, HLA-DR,
BDCA-2, BDCA-4 and CD4 (Figs. 1c and S1A). Compared
to age-matched healthy donor controls (24 bone marrow
and 34 peripheral blood), an increased fraction of these cells
was detected in BMMC of 32/159 (20%) and PBMC of 11/
106 (10%) CMML patients, respectively (Fig. 1d, e and
Table 1). The cut-off value defining an increased fraction of
pDCs in mononucleated cells (mean + 2 SD in age-matched
control samples) was calculated to be 1.2% in the bone
marrow and 0.6% in the peripheral blood (Figs. 1d, e and
S2B-C). Analysis of matched BMMC and PBMC samples
(n= 106) demonstrated that the fraction of pDCs in
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mononucleated cells was always higher in bone marrow
(median %pDC 0.32 [0.04–0.81]) than in peripheral blood
(0.10 [0.02–0.26]; p < 0.0001, Wilcoxon signed rank test,

Figure S2A). Importantly, in patients whose pDC number
was below the cut-off value (pDC-poor CMML patients),
the fraction of pDCs was significantly lower than in healthy

pDCs (% of PBMC)

0.01

0.1

1

10

0.01 0.1 1 10

F

E

pD
Cs

 (%
 o

f B
M

M
C)

r2=0.75
p <0.0001

%
 o

f m
on

on
uc

le
at

ed
 c

el
ls

0.0

0.5

1.0

2.0

3.0

4.0

Controls CMML

Peripheral
Blood

D

%
 o

f m
on

on
uc

le
at

ed
 c

el
ls

Controls CMML

0.0

0.5

1.0

2.0

3.0

5.0

4.0

10.0

15.0

20.0 Bone
Marrow

SS
C

BDCA-2

CD
12

3

BDCA-4 CD4

CD33

H
LA

-D
R

Lin

CD
11

c

CD123CD33

SS
C pDCs

CD
12

3

CD
12

3

CD45+ live cells MNC

MNC HLA-DR+Lin-CD33-

C

MNC HLA-DR+Lin-CD33- MNC HLA-DR+Lin-CD33-

MNC HLA-DR+Lin-CD33-MNC HLA-DR+Lin-

A BHES CD123 TCL1
pD

C-
ric

h
pD

C-
po

or
French Cohort

159 CMML patients

159 BMMC samples
+ 106 matched PBMC

Flow cytometry
Panel NGS-seq
Exome-seq
RNA-seq
Functional analyses

US Cohort

202 CMML patients

202 trephine biopsies
+ 167 matched BMMC 

+ 38 matched PBMC

Flow cytometry (PBMC)
Panel NGS-seq
IHC
Survival analyses

x40 x100 x100

x40 x100 x100

Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia



donor tissues (p= 0.0002 and p= 0.0008 in bone marrow
and peripheral blood, respectively, Figure S2B-C). Com-
parison of cell surface marker staining index only detected a
slightly lower expression of BDCA-2 in pDC-poor CMML
samples (Figure S2D-G). A significant correlation was
observed between the fraction of pDCs measured in mat-
ched blood and bone marrow samples (linear regression,
R2= 0.75, p < 0.001; Fig. 1f). This translated into a good
agreement between pDC bone marrow and peripheral blood
infiltration (91.5%, Cohen’s kappa coefficient= 0.66). Of
these 106 cases, the 11 (10%) patients with an excess of
pDCs in peripheral blood had pDC excess in bone marrow,
whereas 9 of the 20 patients with a pDC excess in bone
marrow had a normal count in peripheral blood.

CD123-positive cells that infiltrate CMML bone
marrow are bona fide pDCs

To further validate the presence of pDCs in CMML patients
using a rigorous definition, we sorted CD45+, Lin−, HLA-
DR+, CD123+, CD11c−, BDCA-4+ cells (Figure S1B)
from CMML patient bone marrow and performed Giemsa
staining demonstrating a typical plasma cell-like morphol-
ogy that included a round or oval shape, an eccentric
nucleus, basophilic cytoplasm and a pale Golgi zone known
as the arcoplasm (Fig. 2a). Electron microscopic analysis of
these cells showed a well-developed rough endoplasmic
reticulum (RER) in an electron-dense cytoplasm (Fig. 2b)
congruent with pDCs. In some cases, we also noticed
cytoplasmic hyaline inclusions made of aggregates of fila-
ments (Fig. 2b, lower panels, arrow). Flow cytometry ana-
lyses of sorted cells identified only a small fraction of cells
expressing AXL and CD33 (Fig. 2c), two markers that were

recently demonstrated to define independent cell popula-
tions described as pre-DC or AS/DC (AXL+ SIGLEC-6+

Dendritic Cell) [27, 28]. The mean fraction of contaminat-
ing pre-DCs was 3.1%, 4.1% and 0.6% of sorted cells in
healthy donor, pDC-poor and pDC-rich CMML samples,
respectively (p= 0.2, non-significant, Kruskal–Wallis test,
Fig. 2d).

We then explored the ability of CMML pDCs to produce
IFNα by intracellular flow cytometry analysis of mono-
nucleated cells stimulated with TLR agonists (Fig. 2e). In
the presence of brefeldin A, which induces the cytoplasmic
retention of synthesized cytokines, IFNα was detected in the
cytoplasm of a fraction of bone marrow (Fig. 2f) and per-
ipheral blood (Fig. 2g) pDCs stimulated for 6 h with a
TLR7 agonist (the guanosine analog loxoribine, 2 mM) or a
TLR9 agonist (CpG ODN2395, 1 µM).

Since pDC accumulation in solid tumors has been
associated with an expansion of regulatory T cells (Tregs),
we measured the fraction of CD3+, CD4+, CD25high,
CD127low Tregs (Figure S1) in BMMC and PBMC of pDC-
rich and pDC-poor CMML patients, and in healthy donors.
The fraction of Tregs among T cells was significantly
higher in the bone marrow and peripheral blood of CMML
patients compared to healthy donors (Fig. 2h, i). The frac-
tion of Tregs among T cells was also significantly higher in
the bone marrow (Fig. 2h) and peripheral blood (Fig. 2i) of
pDC-rich bone marrow patients. We noticed a significant
positive correlation between pDC infiltration and the frac-
tion of Tregs measured in BMMC and PBMC, respectively
(Figure S2).

CMML pDCs are close to healthy donor pDCs

RNA-sequencing was performed in pDCs sorted from pDC-
rich (n= 11) and poor (n= 5) CMML bone marrow sam-
ples. Gene expression in these cells were similar to that
observed in pDC sorted from age-matched healthy donors
(n= 7) (Fig. 3a). More specifically, genes recently defined
as pDC top markers [27] and those otherwise described as
being highly expressed in healthy donor pDCs, including
HLA-DR, CD123, CLEC4C (BDCA2), TLR9, TLR7, NRP1
(BDCA4), IRF7, LILRA4 (ILT7) and TCF4 (E2.2) genes,
were also highly expressed in CMML-associated pDCs.
CMML-derived pDCs expressed low levels of CD5, CD2
and SIGLEC6 genes that characterize the recently described
pre-DC [28] or “AS DC” [27] population and low levels of
lineage specific genes (Fig. 3a). Of note, while AXL mRNA
was variably expressed in all groups tested, low levels of the
protein were detected by flow analysis (Fig. 2d). Principal
component analysis performed on the 500 most variable
genes across pDCs did not distinguish pDCs sorted from
pDC-rich and pDC-poor CMML bone marrow samples and
from healthy donor bone marrow (not shown). DEG

Fig. 1 Identification of CD123high cells in bone marrow and peripheral
blood of CMML patients. a Histological and immunohistochemical
analysis of bone marrow trephine biopsy sections of CMML patients.
One CD123+, TCL1+ cell-rich (upper panel) and one CD123+, TCL1+

cell-poor (lower panel) representative cases are shown (right corner,
magnification). Left column: hematoxylin/eosin staining; middle col-
umn: CD123 staining; right column: TCL1 staining. b Flow chart of the
performed experiments in two patient cohorts. c Multiparameter flow
cytometry analysis of pDCs in bone marrow aspirate and peripheral
blood samples collected from CMML patients and age-matched healthy
controls. Mononuclear cells were identified among CD45+ cells using
Side Scatter (SSC) and CD33 staining. pDCs were identified
among mononucleated cells as HLA-DR+, Lineage (CD3, CD14,
CD15, CD16, CD19, CD24)−, CD33−, CD11c−, CD123+, BDCA-2+,
BDCA-4+, CD4+ cells. Green color was assigned to CD123+, CD11c+

cells before checking for BDCA2, BDCA4 and CD4 expression. d, e
pDC richness was quantified as percentage of pDCs among mono-
nuclear cells in bone marrow (BMMC; controls = 24, CMML = 159)
(d) and matched peripheral blood when available (PBMC; controls= 34,
CMML = 106) (e). f Linear regression of pDCs in peripheral blood,
expressed as the fraction of PBMC, vs. pDCs in bone marrow, expressed
as the fraction of BMMC, in the 106 CMML patients with matched
samples (R2 0.75; p < 0.0001)
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analysis focused on pDC collected from pDC-rich CMML
(n= 6), pDC-poor CMML (n= 3) and healthy donor (n=
4) bone marrow samples detected 74 DEGs between pDC-

poor and pDC-rich CMML, 13 DEGs between pDC-rich
CMML and healthy-donor pDC, and 144 DEGs between
pDC-poor CMML and healthy-donor pDC (Table S3).
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Supervised hierarchical clustering indicated that these genes
could discriminate the three sample categories (Fig. 3b).
Gene Ontology enrichment analysis performed using over-
representation test [32, 33] demonstrated a trend toward
enrichment in IFN-I signaling pathway, response to IFN-I
and cellular defense response in upregulated genes in pDCs
from pDC-rich compared to pDC-poor CMML (adjusted p-
value= 0.11).

pDC bone marrow infiltration correlates with
increased leukemic transformation

Since pDC infiltration has been associated with a poor
outcome in diverse solid tumors, we hypothesized that pDC
bone marrow enrichment in chronic phase CMML before
any treatment may be informative on disease evolution. In
the French prospective cohort, only 58 samples were col-
lected at diagnosis, of which 13 were pDC-rich. The median
follow-up was only 21.7 months, which was inappropriate
to evaluate the prognostic value of pDC infiltration mea-
sured by flow cytometry, Therefore, we performed this
prognostic analysis on an independent retrospective cohort
of 202 patients in which pDCs were detected by immuno-
histopathology (Tables 1 and S1). Bone marrow was con-
sidered as “pDC-rich” when >5% of the BM cells
demonstrated a pDC morphology on hematoxylin–eosin-
stained samples, and were CD123+ as a minimum inclusion
criterion, most of them being also TCL1+. Median follow-
up in this cohort was 81 months. pDC infiltration measured

in the peripheral blood of 38 of these patients by flow
cytometry was in good accordance with immunohis-
tochemistry analyses, i.e. pDCs over 0.6% of PBMC were
detected only in patients with pDCs > 5% in the bone
marrow by immunohistochemistry (Fig. 4a). pDC enrich-
ment of CMML bone marrow was not statistically asso-
ciated with overall survival outcomes, even when higher
percentages of pDCs were used as cut-offs for being con-
sidered “pDC-rich” CMML (>10%, >25% and >50%) (not
shown). However, pDC-rich CMML according to bone
marrow immunohistochemistry was associated with a sig-
nificantly higher cumulative incidence of leukemic trans-
formation, considering death as a competing risk (Fig. 4b,
standardized hazard ratio (sHR) 2.59 [95% confidence
interval (CI) 1.21–5.51]; p= 0.014). Importantly, an
increased bone marrow infiltration with pDCs remained an
independent prognostic factor in multivariate analysis (sHR
3.3 [95% CI: 1.47–7.]; p= 0.004), together with peripheral
blood blast cell count and immature myeloid cell fraction
(Table S4).

Bone marrow infiltrating pDCs are detected in RAS-
mutated CMML

Having demonstrated that CD123high cells that accumulate
in the bone marrow of 20% of patients with CMML are
bona fide pDCs, we wanted to determine if their accumu-
lation was related to specific genetic events. In the French
cohort, pDC-rich CMML samples demonstrated a sig-
nificantly higher incidence of mutations in NRAS alone, or
in combination with KRAS and CBL gene mutations in their
sorted monocytes (Table 1). These correlations were vali-
dated in the US cohort of 202 patients analyzed by immu-
nohistochemistry (Table 1). Targeted sequencing analysis in
sorted monocytes and sorted pDCs of two patients, identi-
fied similar genetic alterations (heterozygous mutations in
TET2 (R1261L) and ASXL1 (G642fs) genes in sample
#1723, in TET2 (M508F and V1136fs), SRSF2 (P95H),
CBL (Y371H and W251X), SETBP1 (D868N), and ASXL1
(I901fs) in sample #1755), with similar variant allele fre-
quencies, thus validating the fact that pDCs were an integral
part of the leukemic clone. Importantly, sample #1723 was
a pDC-poor CMML (0.01% pDCs in BMMCs), indicating
that pDCs from both pDC-rich and pDC-poor CMML were
part of the clone.

We then sorted bone marrow pDCs, peripheral blood
CD14+ monocytes, and CD3+ T cells from 10 CMML
patients. All ten cases displayed marrow pDC enrichment,
thus enabling for the sorting of a sufficient amount of each
cell population to perform whole-exome sequencing
(Figs. 5a, S3A and Table S5). In every CMML patient, we
detected at least one (five cases) and sometimes two or more
(five cases) somatic mutations in genes encoding proteins of

Fig. 2 CD123+ cells identified in CMML patients are bona fide
plasmacytoid dendritic cells. a Giemsa staining of CD45+, Lin−,
HLA-DR+, CD123+, CD11c−, BDCA-4+ sorted cells from a healthy
bone marrow (left panel) or a CMML bone marrow (right panel), (right
corner, magnification). b Transmission electronic microscopy of cells
sorted as in a. Upper panel, left: healthy bone marrow; right: CMML
bone marrow. Note the round cells, with characteristic abundant par-
allel rough endoplasmic reticulum. Lower panel, CMML bone marrow
cells with arrows showing packed juxtanuclear bundle-shaped micro-
filaments. c Cell surface expression of “AS DC” (AXL+ SIGLEC-6+

Dendritic Cell) markers by cells sorted as in a. Note that very few cells
express CD33 and AXL. d Fraction of AXL+, CD33+ cells among
cells sorted as in a. In the following panels, “pDC-rich” indicate
CMML in which the fraction of pDCs in the bone marrow was >1.2%
of mononucleated cells. e–g Flow cytometry analysis of pDCs, gated
as in Fig. 1c, expressing intracellular IFNα Representative flow
cytometry analysis (e) and fraction of bone marrow (f) and peripheral
blood (g) pDCs with intracellular IFNα when stimulated with 1 µg/ml
LPS, 2 mM loxoribine and 1 µM ODN2395 for 6 h and treated with 5
µg/mL brefeldin A for the last 3 h of stimulation. *p < 0.05 (Wilcoxon
ranked test). h Fraction of Treg cells (CD3+, CD4+, CD25high,
CD127low) among T cells as measured by flow cytometry in BMMCs
collected from 26 pDC-rich and 98 pDC-poor CMML patients and 20
healthy donors. i Fraction of Tregs measured by flow cytometry in
PBMCs collected from 18 pDC-rich and 67 pDC-poor CMML patients
and from 34 healthy donors. *p < 0.05; **p < 0.01, (Mann–Whitney
test)
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the RAS pathway. These heterogeneous mutations included
variants in NRAS, KRAS, NF1, CBL, PTPN11, MAP2K1
and GPS2 genes (Fig. 5a). A significant correlation was
observed between variant allele frequencies measured in
monocytes and in pDCs (linear regression, r2= 0.78, p <
0.0001, Fig. 5b). Some clonal heterogeneity could be
detected, e.g. in sample #2048, NRASG13D identified in
sorted pDCs was barely detected in sorted monocytes
(Fig. 5c) whereas, of the three mutations involving the RAS
pathway detected in sample #1829, NRASA59D was almost
exclusively identified in sorted monocytes (Fig. 5d).
Finally, in one bone marrow sample (#2387), we were able
to sort progenitor populations [34, 35]. This sample was
collected from the same patient as sample #2062, with a
10.4-month interval between the two collection time points.

Analysis of somatic mutations in sorted monocytes detected
the loss of a KRASG60V subclone. Five other somatic
mutations showed a similar variant allele frequency in every
cell compartment (Figure S3B).

CD34+ cells from pDC-rich CMML are hypersensitive
to FLT3L

We then analyzed the ability of CD34+ cells from CMML
patients to generate pDCs in vitro by culturing these cells in
the presence of SCF, TPO, IL-3 and FLT3L for 30 days [36,
37]. Serial flow analysis of CD34+ cells-derived pDCs
identified the fraction of CD45+ live cells with a HLA-DR+,
Lin−, CD123high, CD11c−, CD34−, BDCA4+ phenotype as
pDCs (Fig. 6a). Morphological analysis of generated cells
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identified by RNA sequencing in pDCs sorted from a cohort of 3
healthy donors, 6 pDC-rich CMML and 4 pDC-poor CMML bone
marrow samples (The list of DEGs is provided as supplemental
Table 3, pDC-poor vs, pDC-rich CMML, DEGs = 74; pDC-rich vs,
healthy-donor pDCs, DEGs = 13; pDC-poor CMML vs, healthy-
donor pDCs, DEGs = 144)
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after sorting, using conventional microscopy (Fig. 6b, upper
panel) and electron microscopy (Fig. 6b, lower panel), con-
firmed pDC features. From day 15 to day 25, the number of
pDCs generated by CD34+ cells collected from pDC-rich
CMML bone marrow was increased as compared with heal-
thy donor and pDC-poor samples (Fig. 6c, d). Analysis of
somatic variants detected the same abnormalities with similar
allele frequencies in sorted fresh pDCs and pDCs generated in
culture from CD34+ cells (Figure S4). We repeated the
experiments in the absence or presence of increasing amount
of FLT3L, demonstrating the ability of CD34+ cells from
pDC-rich CMML to produce pDCs in the absence of FLT3L
and to produce more pDCs in response to low concentrations
of FLT3L (Fig. 6e). Interestingly, FLT3-L level was
decreased in CMML patients, and this decrease was sig-
nificantly more important in pDC-rich CMML (Fig. 6f). Of
the 18 other cytokines whose level was measured in marrow
plasma, only TPO and TGF-beta levels were decreased in
CMML compared to healthy donor bone marrow plasma,
without significant difference between pDC-rich and pDC-
poor CMML (Figure S5).

Discussion

The current study indicates that ~20% of CMML patients
demonstrate an increased number of bona fide pDCs in their
bone marrow. Somatic mutations in genes of the oncogenic
RAS pathway were detected in all the pDC-rich patients and
their CD34+ cells could differentiate into pDCs in the
absence of FLT3L. pDC amplification in the leukemic clone
correlates with a higher rate of regulatory T cells in the bone

marrow and peripheral blood, and a higher risk of AML
transformation.

The presence of CD123+ cell islands in the bone marrow
of a fraction of patients has long been identified in CMML
and other myeloid neoplasms [23, 38, 39]. This pathologic
finding is distinct from blastic plasmacytoid dendritic cell
neoplasms (BPDCN), a rare clonal proliferation of pDC
precursors that affects elderly people and involves altera-
tions in MYC, RB1 and IKAROS gene family members [39].
CD56, which is typically expressed by pDC precursors that
accumulate in BPDCN [39, 40], was not identified on
CMML-associated morphologically mature pDCs. In addi-
tion, genetic alterations commonly encountered in BPDCN
were not detected by whole-exome sequencing of sorted
CMML-associated pDCs [41], and none of the studied
CMML patients developed a typical BPDCN.

Because of their plasmacytoid morphology, CD123high

cells that infiltrate the bone marrow of CMML patients were
considered as pDCs, but a definitive proof of their identity
was missing. While CD123high cell populations are more
complex than initially thought, our study establishes the fact
that most of CD123high cells that accumulate in CMML
bone marrows are bona fide pDC.

pDCs that accumulate in the bone marrow of CMML
patients belong to the leukemic clone, as somatic variants
identified in these cells were also detected in monocytes. In
two large international cohorts, the presence of NRAS
mutations was significantly more frequent in pDC-rich
compared to pDC-poor CMML patients, with whole-exome
sequencing of sorted cell subsets confirming that pDC
expansion was associated with one or more mutations in
genes of the oncogenic RAS pathway. Our prior analyses
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suggested that TET2/NRAS double-mutant clones expand
over time, including at relapse after allogeneic stem cell
transplantation [16]. Studies in mice also demonstrated the
cooperative effect of NRAS mutation and TET2 deletion in
activating the RAS signaling pathway to promote clonal
expansion and leukemic progression [42]. Finally, NRAS
mutations were shown to be part of so-called type-1
mutations associated with faster progression of MDS to
AML [43]. Whether or not pDC accumulation is involved in

the increased risk of AML transformation associated with
RAS pathway mutations needs to be elucidated.

A concerted effect of FLT3L and GM-CSF on myeloid
cell homeostasis has been described [44], with FLT3L
supporting the development of pDCs through TCF4 and
IRF8 and GM-CSF antagonizing this effect through STAT5
activation [45]. In patients with pDC accumulation, CD34+

cells may escape the regulatory functions of these cyto-
kines. Interestingly, pDC accumulation in a bone marrow
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environment that produces low levels of FLT3L [46]
appears to be unique among myeloid malignancies [47].

pDCs are the main type I IFN-producing cells [48]. IFNα
has demonstrated antineoplastic effects through the activa-
tion of pDCs, cytotoxic T-cells and NK cells, while
demonstrating a context-dependent effect on CD4 T cells
[49]. IFNα has also demonstrated therapeutic benefits in
myeloid malignancies [50], suggesting that stimulation of
pDCs that accumulate in CMML bone marrow could have
therapeutic benefits. Induction of an immune cell death of

leukemic cells, e.g. with an oncolytic virus [51], could
potentially activate the tumor antigen cross-presentation
function and IFNα production by pDC in excess. However,
pDCs that accumulate in aggressive human tumors are
usually IFN-α-deficient. They promote the expansion of
disease-associated Tregs, which contribute to tumor
immune tolerance and poor clinical outcome [52]. Similar
to high-risk MDS where disease progression correlates with
an expansion of CD4+ Tregs [53–55], pDC accumulation in
CMML could generate an immunosuppressive environment
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by promoting the expansion of CD4+ Tregs, which may
account for the higher risk of progression to AML. Of note,
in spite of a slight correlation between the two cell popu-
lations, pDC accumulation may not be the only parameter to
promote Treg expansion as these cells are also increased in
so-called “pDC-poor” CMML samples, in comparison to
healthy donor bone marrows.

Regardless of their biological effects, given their asso-
ciation with leukemic transformation, pDCs in CMML
patients could serve as critical therapeutic targets. Current
options include SL-401 (Tagraxofusp), an antibody con-
jugate targeting CD123, currently undergoing phase II trials
in CMML, with preliminary data demonstrating a 71%
spleen response rate and a 17% BM complete remission rate
[56, 57], or with lenalidomide, an immunomodulatory drug
that decreases pDC number by inducing the proteosomal
degradation of Ikaros Family Zinc Finger 1 (IKZF1) tran-
scription factor [58].
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